Group Isomorphism - Cyclic Groups

Cyclic Groups

All cyclic groups of a given order are isomorphic to .

Let G be a cyclic group and n be the order of G. G is then the group generated by . We will show that

Define

, so that . Clearly, is bijective.

Then

which proves that .

Read more about this topic:  Group Isomorphism

Famous quotes containing the word groups:

    In America every woman has her set of girl-friends; some are cousins, the rest are gained at school. These form a permanent committee who sit on each other’s affairs, who “come out” together, marry and divorce together, and who end as those groups of bustling, heartless well-informed club-women who govern society. Against them the Couple of Ehepaar is helpless and Man in their eyes but a biological interlude.
    Cyril Connolly (1903–1974)