Extensions in General
One extension, the direct product, is immediately obvious. If one requires G and Q to be abelian groups, then the set of isomorphism classes of extensions of Q by a given (abelian) group N is in fact a group, which is isomorphic to
- ;
cf. the Ext functor. Several other general classes of extensions are known but no theory exists which treats all the possible extensions at one time. Group extension is usually described as a hard problem; it is termed the extension problem.
To consider some examples, if G = H × K, then G is an extension of both H and K. More generally, if G is a semidirect product of K and H, then G is an extension of H by K, so such products as the wreath product provide further examples of extensions.
Read more about this topic: Group Extension
Famous quotes containing the words extensions and/or general:
“The psychological umbilical cord is more difficult to cut than the real one. We experience our children as extensions of ourselves, and we feel as though their behavior is an expression of something within us...instead of an expression of something in them. We see in our children our own reflection, and when we dont like what we see, we feel angry at the reflection.”
—Elaine Heffner (20th century)
“The world can doubtless never be well known by theory: practice is absolutely necessary; but surely it is of great use to a young man, before he sets out for that country, full of mazes, windings, and turnings, to have at least a general map of it, made by some experienced traveller.”
—Philip Dormer Stanhope, 4th Earl Chesterfield (16941773)