Types of Actions
The action of G on X is called
- Transitive if X is non-empty and if for any x, y in X there exists a g in G such that g.x = y.
- Faithful (or effective) if for any two distinct g, h in G there exists an x in X such that g.x ≠ h.x; or equivalently, if for any g≠ e in G there exists an x in X such that g.x ≠ x. Intuitively, in a faithful group action, different elements of G induce different permutations of X.
- Free (or semiregular) if, given g, h in G, the existence of an x in X with g.x = h.x implies g = h. Equivalently: if g is a group element and there exists an x in X with g.x = x (that is, if g has at least one fixed point), then g is the identity.
- Regular (or simply transitive or sharply transitive) if it is both transitive and free; this is equivalent to saying that for any two x, y in X there exists precisely one g in G such that g.x = y. In this case, X is known as a principal homogeneous space for G or as a G-torsor.
- n-transitive if X has at least n elements and for any pairwise distinct x1, ..., xn and pairwise distinct y1, ..., yn there is a g in G such that g·xk = yk for 1 ≤ k ≤ n. A 2-transitive action is also called doubly transitive, a 3-transitive action is also called triply transitive, and so on. Such actions define 2-transitive groups, 3-transitive groups, and multiply transitive groups.
- Sharply n-transitive if there is exactly one such g. See also sharply triply transitive groups.
- Primitive if it is transitive and preserves no non-trivial partition of X. See primitive permutation group for details.
- Locally free if G is a topological group, and there is a neighbourhood U of e in G such that the restriction of the action to U is free; that is, if g.x = x for some x and some g in U then g = e.
- Irreducible if X is a non-zero module over a ring R, the action of G is R-linear, and there is no nonzero proper invariant submodule.
Every free action on a non-empty set is faithful. A group G acts faithfully on X if and only if the corresponding homomorphism G → Sym(X) has a trivial kernel. Thus, for a faithful action, G is isomorphic to a permutation group on X; specifically, G is isomorphic to its image in Sym(X).
The action of any group G on itself by left multiplication is regular, and thus faithful as well. Every group can, therefore, be embedded in the symmetric group on its own elements, Sym(G) — a result known as Cayley's theorem.
If G does not act faithfully on X, one can easily modify the group to obtain a faithful action. If we define N = {g in G : g.x = x for all x in X}, then N is a normal subgroup of G; indeed, it is the kernel of the homomorphism G → Sym(X). The factor group G/N acts faithfully on X by setting (gN).x = g.x. The original action of G on X is faithful if and only if N = {e}.
Read more about this topic: Group Action
Famous quotes containing the words types of, types and/or actions:
“Science is intimately integrated with the whole social structure and cultural tradition. They mutually support one otheronly in certain types of society can science flourish, and conversely without a continuous and healthy development and application of science such a society cannot function properly.”
—Talcott Parsons (19021979)
“The rank and file have let their servants become their masters and dictators.... Provision should be made in all union constitutions for the recall of leaders. Big salaries should not be paid. Career hunters should be driven out, as well as leaders who use labor for political ends. These types are menaces to the advancement of labor.”
—Mother Jones (18301930)
“History by apprising them [students] of the past will enable them to judge of the future; it will avail them of the experience of other times and other nations; it will qualify them as judges of the actions and designs of men; it will enable them to know ambition under every disguise it may assume; and knowing it, to defeat its views.”
—Thomas Jefferson (17431826)