One often considers continuous group actions: the group G is a topological group, X is a topological space, and the map G × X → X is continuous with respect to the product topology of G × X. The space X is also called a G-space in this case. This is indeed a generalization, since every group can be considered a topological group by using the discrete topology. All the concepts introduced above still work in this context, however we define morphisms between G-spaces to be continuous maps compatible with the action of G. The quotient X/G inherits the quotient topology from X, and is called the quotient space of the action. The above statements about isomorphisms for regular, free and transitive actions are no longer valid for continuous group actions.
If G is a discrete group acting on a topological space X, the action is properly discontinuous if for any point x in X there is an open neighborhood U of x in X, such that the set of all g in G for which consists of the identity only. If X is a regular covering space of another topological space Y, then the action of the deck transformation group on X is properly discontinuous as well as being free. Every free, properly discontinuous action of a group G on a path-connected topological space X arises in this manner: the quotient map X ↦ X/G is a regular covering map, and the deck transformation group is the given action of G on X. Furthermore, if X is simply connected, the fundamental group of X/G will be isomorphic to G.
These results have been generalised in the book Topology and Groupoids referenced below to obtain the fundamental groupoid of the orbit space of a discontinuous action of a discrete group on a Hausdorff space, as, under reasonable local conditions, the orbit groupoid of the fundamental groupoid of the space. This allows calculations such as the fundamental group of the symmetric square of a space X, namely the orbit space of the product of X with itself under the twist action of the cyclic group of order 2 sending (x, y) to (y, x).
An action of a group G on a locally compact space X is cocompact if there exists a compact subset A of X such that GA = X. For a properly discontinuous action, cocompactness is equivalent to compactness of the quotient space X/G.
The action of G on X is said to be proper if the mapping G×X → X×X that sends (g,x)↦(g.x, x) is a proper map.
Read more about this topic: Group Action
Famous quotes containing the words continuous, group and/or actions:
“The gap between ideals and actualities, between dreams and achievements, the gap that can spur strong men to increased exertions, but can break the spirit of othersthis gap is the most conspicuous, continuous land mark in American history. It is conspicuous and continuous not because Americans achieve little, but because they dream grandly. The gap is a standing reproach to Americans; but it marks them off as a special and singularly admirable community among the worlds peoples.”
—George F. Will (b. 1941)
“Laughing at someone else is an excellent way of learning how to laugh at oneself; and questioning what seem to be the absurd beliefs of another group is a good way of recognizing the potential absurdity of many of ones own cherished beliefs.”
—Gore Vidal (b. 1925)
“Now that Stevenson is dead I can think of but one English- speaking author who is really keeping his self-respect and sticking for perfection. Of course I refer to that mighty master of language and keen student of human actions and motives, Henry James.”
—Willa Cather (18731947)