Group Action - Continuous Group Actions

One often considers continuous group actions: the group G is a topological group, X is a topological space, and the map G × XX is continuous with respect to the product topology of G × X. The space X is also called a G-space in this case. This is indeed a generalization, since every group can be considered a topological group by using the discrete topology. All the concepts introduced above still work in this context, however we define morphisms between G-spaces to be continuous maps compatible with the action of G. The quotient X/G inherits the quotient topology from X, and is called the quotient space of the action. The above statements about isomorphisms for regular, free and transitive actions are no longer valid for continuous group actions.

If G is a discrete group acting on a topological space X, the action is properly discontinuous if for any point x in X there is an open neighborhood U of x in X, such that the set of all g in G for which consists of the identity only. If X is a regular covering space of another topological space Y, then the action of the deck transformation group on X is properly discontinuous as well as being free. Every free, properly discontinuous action of a group G on a path-connected topological space X arises in this manner: the quotient map XX/G is a regular covering map, and the deck transformation group is the given action of G on X. Furthermore, if X is simply connected, the fundamental group of X/G will be isomorphic to G.

These results have been generalised in the book Topology and Groupoids referenced below to obtain the fundamental groupoid of the orbit space of a discontinuous action of a discrete group on a Hausdorff space, as, under reasonable local conditions, the orbit groupoid of the fundamental groupoid of the space. This allows calculations such as the fundamental group of the symmetric square of a space X, namely the orbit space of the product of X with itself under the twist action of the cyclic group of order 2 sending (x, y) to (y, x).

An action of a group G on a locally compact space X is cocompact if there exists a compact subset A of X such that GA = X. For a properly discontinuous action, cocompactness is equivalent to compactness of the quotient space X/G.

The action of G on X is said to be proper if the mapping G×XX×X that sends (g,x)↦(g.x, x) is a proper map.

Read more about this topic:  Group Action

Famous quotes containing the words continuous, group and/or actions:

    If an irreducible distinction between theatre and cinema does exist, it may be this: Theatre is confined to a logical or continuous use of space. Cinema ... has access to an alogical or discontinuous use of space.
    Susan Sontag (b. 1933)

    If the Russians have gone too far in subjecting the child and his peer group to conformity to a single set of values imposed by the adult society, perhaps we have reached the point of diminishing returns in allowing excessive autonomy and in failing to utilize the constructive potential of the peer group in developing social responsibility and consideration for others.
    Urie Bronfenbrenner (b. 1917)

    However, our fates at least are social. Our courses do not diverge; but as the web of destiny is woven it is fulled, and we are cast more and more into the centre. Men naturally, though feebly, seek this alliance, and their actions faintly foretell it.
    Henry David Thoreau (1817–1862)