Probabilities and Expected Value
In 1972, James E. Nymann showed that k integers, chosen independently and uniformly from {1,...,n}, are coprime with probability 1/ζ(k) as n goes to infinity. (See coprime for a derivation.) This result was extended in 1987 to show that the probability that k random integers has greatest common divisor d is d-k/ζ(k).
Using this information, the expected value of the greatest common divisor function can be seen (informally) to not exist when k = 2. In this case the probability that the gcd equals d is d−2/ζ(2), and since ζ(2) = π2/6 we have
This last summation is the harmonic series, which diverges. However, when k ≥ 3, the expected value is well-defined, and by the above argument, it is
For k = 3, this is approximately equal to 1.3684. For k = 4, it is approximately 1.1106.
Read more about this topic: Greatest Common Divisor
Famous quotes containing the word expected:
“At times it seems that the media have become the mainstream culture in children’s lives. Parents have become the alternative. Americans once expected parents to raise their children in accordance with the dominant cultural messages. Today they are expected to raise their children in opposition to it.”
—Ellen Goodman (20th century)