Effects of A Passing Gravitational Wave
The effects of a passing gravitational wave can be visualized by imagining a perfectly flat region of spacetime with a group of motionless test particles lying in a plane (the surface of your screen). As a gravitational wave passes through the particles along a line perpendicular to the plane of the particles (i.e. following your line of vision into the screen), the particles will follow the distortion in spacetime, oscillating in a "cruciform" manner, as shown in the animations. The area enclosed by the test particles does not change and there is no motion along the direction of propagation.
The oscillations depicted here in the animation are exaggerated for the purpose of discussion—in reality a gravitational wave has a very small amplitude (as formulated in linearized gravity). However they enable us to visualize the kind of oscillations associated with gravitational waves as produced for example by a pair of masses in a circular orbit. In this case the amplitude of the gravitational wave is a constant, but its plane of polarization changes or rotates at twice the orbital rate and so the time-varying gravitational wave size (or 'periodic spacetime strain') exhibits a variation as shown in the animation. If the orbit is elliptical then the gravitational wave's amplitude also varies with time according Einstein's quadrupole formula.
Like other waves, there are a few useful characteristics describing a gravitational wave:
- Amplitude: Usually denoted, this is the size of the wave — the fraction of stretching or squeezing in the animation. The amplitude shown here is roughly (or 50%). Gravitational waves passing through the Earth are many billions times weaker than this — . Note that this is not the quantity which would be analogous to what is usually called the amplitude of an electromagnetic wave, which would be .
- Frequency: Usually denoted f, this is the frequency with which the wave oscillates (1 divided by the amount of time between two successive maximum stretches or squeezes)
- Wavelength: Usually denoted, this is the distance along the wave between points of maximum stretch or squeeze.
- Speed: This is the speed at which a point on the wave (for example, a point of maximum stretch or squeeze) travels. For gravitational waves with small amplitudes, this is equal to the speed of light, .
The speed, wavelength, and frequency of a gravitational wave are related by the equation c = λ f, just like the equation for a light wave. For example, the animations shown here oscillate roughly once every two seconds. This would correspond to a frequency of 0.5 Hz, and a wavelength of about 600,000 km, or 47 times the diameter of the Earth.
In the example just discussed, we actually assume something special about the wave. We have assumed that the wave is linearly polarized, with a "plus" polarization, written . Polarization of a gravitational wave is just like polarization of a light wave except that the polarizations of a gravitational wave are at 45 degrees, as opposed to 90 degrees. In particular, if we had a "cross"-polarized gravitational wave, the effect on the test particles would be basically the same, but rotated by 45 degrees, as shown in the second animation. Just as with light polarization, the polarizations of gravitational waves may also be expressed in terms of circularly polarized waves. Gravitational waves are polarized because of the nature of their sources. The polarization of a wave depends on the angle from the source, as we will see in the next section.
Read more about this topic: Gravitational Wave
Famous quotes containing the words effects of, effects, passing and/or wave:
“The hippie is the scion of surplus value. The dropout can only claim sanctity in a society which offers something to be dropped out ofcareer, ambition, conspicuous consumption. The effects of hippie sanctimony can only be felt in the context of others who plunder his lifestyle for what they find good or profitable, a process known as rip-off by the hippie, who will not see how savagely he has pillaged intricate and demanding civilizations for his own parodic lifestyle.”
—Germaine Greer (b. 1939)
“Consider what effects which might conceivably have practical bearings we conceive the object of our conception to have. Then our conception of these effects is the whole of our conception of the object.”
—Charles Sanders Peirce (18391914)
“Our strife pertains to ourselvesto the passing generations of men; and it can, without convulsion, be hushed forever with the passing of one generation.”
—Abraham Lincoln (18091865)
“I hear
the tide turning. Last
eager wave over-
taken and pulled back
by first wave of the ebb.”
—Denise Levertov (b. 1923)