Gravitational Binding Energy - Derivation For A Uniform Sphere

Derivation For A Uniform Sphere

The gravitational binding energy of a sphere is found by imagining that it is pulled apart by successively moving spherical shells to infinity, the outermost first, and finding the total energy needed for that.

If we assume a constant density then the masses of a shell and the sphere inside it are:

and

The required energy for a shell is the negative of the gravitational potential energy:

Integrating over all shells we get:

Remembering that is simply equal to the mass of the whole divided by its volume for objects with uniform density we get:

And finally, plugging this in to our result we get:

Read more about this topic:  Gravitational Binding Energy

Famous quotes containing the words uniform and/or sphere:

    When a uniform exercise of kindness to prisoners on our part has been returned by as uniform severity on the part of our enemies, you must excuse me for saying it is high time, by other lessons, to teach respect to the dictates of humanity; in such a case, retaliation becomes an act of benevolence.
    Thomas Jefferson (1743–1826)

    No person can be considered as possessing a good education without religion. A good education is that which prepares us for our future sphere of action and makes us contented with that situation in life in which God, in his infinite mercy, has seen fit to place us, to be perfectly resigned to our lot in life, whatever it may be.
    Ann Plato (1820–?)