Solution of A Linear System
Gradient descent can be used to solve a system of linear equations, reformulated as a quadratic minimization problem, e.g., using linear least squares. Solution of
in the sense of linear least squares is defined as minimizing the function
In traditional linear least squares for real and the Euclidean norm is used, in which case
In this case, the line search minimization, finding the locally optimal step size on every iteration, can be performed analytically, and explicit formulas for the locally optimal are known.
For solving linear equations, gradient descent is rarely used, with the conjugate gradient method being one of the most popular alternatives. The speed of convergence of gradient descent depends on the maximal and minimal eigenvalues of, while the speed of convergence of conjugate gradients has a more complex dependence on the eigenvalues, and can benefit from preconditioning. Gradient descent also benefits from preconditioning, but this is not done as commonly.
Read more about this topic: Gradient Descent
Famous quotes containing the words solution of, solution and/or system:
“I herewith commission you to carry out all preparations with regard to ... a total solution of the Jewish question in those territories of Europe which are under German influence.... I furthermore charge you to submit to me as soon as possible a draft showing the ... measures already taken for the execution of the intended final solution of the Jewish question.”
—Hermann Goering (18931946)
“Who shall forbid a wise skepticism, seeing that there is no practical question on which any thing more than an approximate solution can be had? Is not marriage an open question, when it is alleged, from the beginning of the world, that such as are in the institution wish to get out, and such as are out wish to get in?”
—Ralph Waldo Emerson (18031882)
“It would be enough for me to have the system of a jury of twelve versus the system of one judge as a basis for preferring the U.S. to the Soviet Union.... I would prefer the country you can leave to the country you cannot.”
—Joseph Brodsky (b. 1940)