A Computational Example
The gradient descent algorithm is applied to find a local minimum of the function f(x)=x4−3x3+2, with derivative f'(x)=4x3−9x2. Here is an implementation in the Python programming language.
# From calculation, we expect that the local minimum occurs at x=9/4 x_old = 0 x_new = 6 # The algorithm starts at x=6 eps = 0.01 # step size precision = 0.00001 def f_prime(x): return 4 * x**3 - 9 * x**2 while abs(x_new - x_old) > precision: x_old = x_new x_new = x_old - eps * f_prime(x_old) print "Local minimum occurs at ", x_newThe above piece of code has to be modified with regard to step size according to the system at hand and convergence can be made faster by using an adaptive step size. In the above case the step size is not adaptive. It stays at 0.01 in all the directions which can sometimes cause the method to fail by diverging from the minimum.
Read more about this topic: Gradient Descent