Graded Algebra - G-graded Rings and Algebras

G-graded Rings and Algebras

Above definitions have been generalized to gradings ring using any monoid G as an index set. A G-graded ring A is a ring with a direct sum decomposition

such that

The notion of "graded ring" now becomes the same thing as a N-graded ring, where N is the monoid of non-negative integers under addition. The definitions for graded modules and algebras can also be extended this way replacing the indexing set N with any monoid G.

Remarks:

  • If we do not require that the ring have an identity element, semigroups may replace monoids.

Examples:

  • A group naturally grades the corresponding group ring; similarly, monoid rings are graded by the corresponding monoid.
  • A superalgebra is another term for a Z2-graded algebra. Examples include Clifford algebras. Here the homogeneous elements are either of degree 0 (even) or 1 (odd).

Read more about this topic:  Graded Algebra

Famous quotes containing the word rings:

    If a man do not erect in this age his own tomb ere he dies, he shall live no longer in monument than the bell rings and the widow weeps.
    William Shakespeare (1564–1616)