Representing Rational Numbers As Golden Ratio Base Numbers
Every non-negative rational number can be represented as a recurring base-φ expansion, as can any non-negative element of the field Q = Q + √5Q, the field generated by the rational numbers and √5. Conversely any recurring (or terminating) base-φ expansion is a non-negative element of Q. Some examples (with spaces added for emphasis):
- 1/2 ≈ 0.010 010 010 010 ... φ
- 1/3 ≈ 0.00101000 00101000 00101000... φ
- √5 = 10.1φ
- 2+(1/13)√5 ≈ 10.010 1000100010101000100010000000 1000100010101000100010000000 1000100010101000100010000000 ...φ
The justification that a rational gives a recurring expansion is analogous to the equivalent proof for a base-n numeration system (n=2,3,4,...). Essentially in base-φ long division there are only a finite number of possible remainders, and so once there must be a recurring pattern. For example with 1/2 = 1/10.01φ = 100φ/1001φ long division looks like this (note that base-φ subtraction may be hard to follow at first):
.0 1 0 0 1 ________________________ 1 0 0 1 ) 1 0 0.0 0 0 0 0 0 0 0 1 0 0 1 trade: 10000 = 1100 = 1011 ------- so 10000-1001 = 1011-1001 = 10 1 0 0 0 0 1 0 0 1 ------- etc.The converse is also true, in that a number with a recurring base-φ; representation is an element of the field Q. This follows from the observation that a recurring representation with period k involves a geometric series with ratio φ-k, which will sum to an element of Q.
Read more about this topic: Golden Ratio Base
Famous quotes containing the words representing, rational, numbers, golden, ratio and/or base:
“There are people who are so presumptuous that they know no other way to praise a greatness that they publicly admire than by representing it as a preliminary stage and bridge leading to themselves.”
—Friedrich Nietzsche (18441900)
“If we did not have rational souls, we would not be able to believe.”
—St. Augustine (354430)
“... there are persons who seem to have overcome obstacles and by character and perseverance to have risen to the top. But we have no record of the numbers of able persons who fall by the wayside, persons who, with enough encouragement and opportunity, might make great contributions.”
—Mary Barnett Gilson (1877?)
“All in the golden afternoon
Full leisurely we glide;
For both our oars, with little skill,
By little arms are plied,
While little hands make vain pretense
Our wanderings to guide.”
—Lewis Carroll [Charles Lutwidge Dodgson] (18321898)
“Official dignity tends to increase in inverse ratio to the importance of the country in which the office is held.”
—Aldous Huxley (18941963)
“Things base and vile, holding no quantity,
Love can transpose to form and dignity.
Love looks not with the eyes, but with the mind,
And therefore is winged Cupid painted blind.”
—William Shakespeare (15641616)