A Goldbach number is an even positive integer that can be expressed as the sum of two primes. Therefore, another statement of Goldbach's conjecture is that all even integers greater than or equal to 4 are Goldbach numbers.
The expression of a given even number as a sum of two primes is called a Goldbach partition of that number. For example:
- 2(2) = 4 = 2 + 2
- 2(3) = 6 = 3 + 3
- 2(4) = 8 = 3 + 5
- 2(5) = 10 = 3 + 7 = 5 + 5
- ...
- 2(50) = 100 = 3 + 97 = 11 + 89 = 17 + 83 = 29 + 71 = 41 + 59 = 47 + 53
- ...
The number of unordered ways in which 2n can be written as the sum of two primes (for n starting at 1) is:
- 0, 1, 1, 1, 2, 1, 2, 2, 2, 2, 3, 3, 3, 2, 3, 2, 4, 4, 2, 3, ... ( A045917).
Read more about this topic: Goldbach's Conjecture
Famous quotes containing the word number:
“Not too many years ago, a childs experience was limited by how far he or she could ride a bicycle or by the physical boundaries that parents set. Today ... the real boundaries of a childs life are set more by the number of available cable channels and videotapes, by the simulated reality of videogames, by the number of megabytes of memory in the home computer. Now kids can go anywhere, as long as they stay inside the electronic bubble.”
—Richard Louv (20th century)