Glossary Of Group Theory
A group (G, •) is a set G closed under a binary operation • satisfying the following 3 axioms:
- Associativity: For all a, b and c in G, (a • b) • c = a • (b • c).
- Identity element: There exists an e∈G such that for all a in G, e • a = a • e = a.
- Inverse element: For each a in G, there is an element b in G such that a • b = b • a = e, where e is an identity element.
Basic examples for groups are the integers Z with addition operation, or rational numbers without zero Q\{0} with multiplication. More generally, for any ring R, the units in R form a multiplicative group. See the group article for an illustration of this definition and for further examples. Groups include, however, much more general structures than the above. Group theory is concerned with proving abstract statements about groups, regardless of the actual nature of element and the operation of the groups in question.
This glossary provides short explanations of some basic notions used throughout group theory. Please refer to group theory for a general description of the topic. See also list of group theory topics.
Read more about Glossary Of Group Theory: Basic Definitions, Finiteness Conditions, Abelian Groups, Normal Series, Other Notions
Famous quotes containing the words group and/or theory:
“Once it was a boat, quite wooden
and with no business, no salt water under it
and in need of some paint. It was no more
than a group of boards. But you hoisted her, rigged her.
Shes been elected.”
—Anne Sexton (19281974)
“The theory seems to be that so long as a man is a failure he is one of Gods chillun, but that as soon as he has any luck he owes it to the Devil.”
—H.L. (Henry Lewis)