Extensions of Galois Theory
- Inverse problem of Galois theory
- Given a group G, find an extension of the rational number or other field with G as Galois group.
- Differential Galois theory
- The subject in which symmetry groups of differential equations are studied along the lines traditional in Galois theory. This is actually an old idea, and one of the motivations when Sophus Lie founded the theory of Lie groups. It has not, probably, reached definitive form.
- Grothendieck's Galois theory
- A very abstract approach from algebraic geometry, introduced to study the analogue of the fundamental group.
Read more about this topic: Glossary Of Field Theory
Famous quotes containing the words extensions of, extensions and/or theory:
“The psychological umbilical cord is more difficult to cut than the real one. We experience our children as extensions of ourselves, and we feel as though their behavior is an expression of something within us...instead of an expression of something in them. We see in our children our own reflection, and when we dont like what we see, we feel angry at the reflection.”
—Elaine Heffner (20th century)
“If we focus exclusively on teaching our children to read, write, spell, and count in their first years of life, we turn our homes into extensions of school and turn bringing up a child into an exercise in curriculum development. We should be parents first and teachers of academic skills second.”
—Neil Kurshan (20th century)
“There could be no fairer destiny for any physical theory than that it should point the way to a more comprehensive theory in which it lives on as a limiting case.”
—Albert Einstein (18791955)