Definition of A Field
A field is a commutative ring (F,+,*) in which 0≠1 and every nonzero element has a multiplicative inverse. In a field we thus can perform the operations addition, subtraction, multiplication, and division.
The non-zero elements of a field F form an abelian group under multiplication; this group is typically denoted by F×;
The ring of polynomials in the variable x with coefficients in F is denoted by F.
Read more about this topic: Glossary Of Field Theory
Famous quotes containing the words definition of, definition and/or field:
“It is very hard to give a just definition of love. The most we can say of it is this: that in the soul, it is a desire to rule; in the spirit, it is a sympathy; and in the body, it is but a hidden and subtle desire to possessafter many mysterieswhat one loves.”
—François, Duc De La Rochefoucauld (16131680)
“Was man made stupid to see his own stupidity?
Is God by definition indifferent, beyond us all?
Is the eternal truth mans fighting soul
Wherein the Beast ravens in its own avidity?”
—Richard Eberhart (b. 1904)
“The field of the poor may yield much food, but it is swept away through injustice.”
—Bible: Hebrew, Proverbs 13:23.