Glossary of Field Theory - Definition of A Field

Definition of A Field

A field is a commutative ring (F,+,*) in which 0≠1 and every nonzero element has a multiplicative inverse. In a field we thus can perform the operations addition, subtraction, multiplication, and division.

The non-zero elements of a field F form an abelian group under multiplication; this group is typically denoted by F×;

The ring of polynomials in the variable x with coefficients in F is denoted by F.

Read more about this topic:  Glossary Of Field Theory

Famous quotes containing the words definition of a, definition of, definition and/or field:

    It’s a rare parent who can see his or her child clearly and objectively. At a school board meeting I attended . . . the only definition of a gifted child on which everyone in the audience could agree was “mine.”
    Jane Adams (20th century)

    The physicians say, they are not materialists; but they are:MSpirit is matter reduced to an extreme thinness: O so thin!—But the definition of spiritual should be, that which is its own evidence. What notions do they attach to love! what to religion! One would not willingly pronounce these words in their hearing, and give them the occasion to profane them.
    Ralph Waldo Emerson (1803–1882)

    Beauty, like all other qualities presented to human experience, is relative; and the definition of it becomes unmeaning and useless in proportion to its abstractness. To define beauty not in the most abstract, but in the most concrete terms possible, not to find a universal formula for it, but the formula which expresses most adequately this or that special manifestation of it, is the aim of the true student of aesthetics.
    Walter Pater (1839–1894)

    When it had long since outgrown his purely medical implications and become a world movement which penetrated into every field of science and every domain of the intellect: literature, the history of art, religion and prehistory; mythology, folklore, pedagogy, and what not.
    Thomas Mann (1875–1955)