Climate Models
A climate model is a computerized representation of the five components of the climate system: Atmosphere, hydrosphere, cryosphere, land surface, and biosphere. Such models are based on physical principles including fluid dynamics, thermodynamics and radiative transfer. There can be components which represent air movement, temperature, clouds, and other atmospheric properties; ocean temperature, salt content, and circulation; ice cover on land and sea; the transfer of heat and moisture from soil and vegetation to the atmosphere; chemical and biological processes; and others.
Although researchers attempt to include as many processes as possible, simplifications of the actual climate system are inevitable because of the constraints of available computer power and limitations in knowledge of the climate system. Results from models can also vary due to different greenhouse gas inputs and the model's climate sensitivity. For example, the uncertainty in IPCC's 2007 projections is caused by (1) the use of multiple models with differing sensitivity to greenhouse gas concentrations, (2) the use of differing estimates of humanities' future greenhouse gas emissions, (3) any additional emissions from climate feedbacks that were not included in the models IPCC used to prepare its report, i.e., greenhouse gas releases from permafrost.
The models do not assume the climate will warm due to increasing levels of greenhouse gases. Instead the models predict how greenhouse gases will interact with radiative transfer and other physical processes. One of the mathematical results of these complex equations is a prediction whether warming or cooling will occur.
Recent research has called special attention to the need to refine models with respect to the effect of clouds and the carbon cycle.
Models are also used to help investigate the causes of recent climate change by comparing the observed changes to those that the models project from various natural and human-derived causes. Although these models do not unambiguously attribute the warming that occurred from approximately 1910 to 1945 to either natural variation or human effects, they do indicate that the warming since 1970 is dominated by man-made greenhouse gas emissions.
The physical realism of models is tested by examining their ability to simulate contemporary or past climates.
Climate models produce a good match to observations of global temperature changes over the last century, but do not simulate all aspects of climate. Not all effects of global warming are accurately predicted by the climate models used by the IPCC. Observed Arctic shrinkage has been faster than that predicted. Precipitation increased proportional to atmospheric humidity, and hence significantly faster than global climate models predict.
Read more about this topic: Global Warming
Famous quotes containing the words climate and/or models:
“The question of place and climate is most closely related to the question of nutrition. Nobody is free to live everywhere; and whoever has to solve great problems that challenge all his strength actually has a very restricted choice in this matter. The influence of climate on our metabolism, its retardation, its acceleration, goes so far that a mistaken choice of place and climate can not only estrange a man from his task but can actually keep it from him: he never gets to see it.”
—Friedrich Nietzsche (18441900)
“French rhetorical models are too narrow for the English tradition. Most pernicious of French imports is the notion that there is no person behind a text. Is there anything more affected, aggressive, and relentlessly concrete than a Parisan intellectual behind his/her turgid text? The Parisian is a provincial when he pretends to speak for the universe.”
—Camille Paglia (b. 1947)