Gimbal Lock in Applied Mathematics
The problem of the gimbal lock appears when one uses the Euler angles in an application of mathematics, for example in a computer program (3D modeling, embedded navigation systems, 3D video games, metaverses, ...).
In formal language, gimbal lock occurs because the map from Euler angles to rotations (topologically, from the 3-torus T3 to the real projective space RP3) is not a covering map – it is not a local homeomorphism at every point, and thus at some points the rank (degrees of freedom) must drop below 3, at which point gimbal lock occurs. Euler angles provide a means for giving a numerical description of any rotation in three dimensional space using three numbers, but not only is this description not unique, but there are some points where not every change in the target space (rotations) can be realized by a change in the source space (Euler angles). This is a topological constraint – there is no covering map from the 3-torus to the 3-dimensional real projective space; the only (non-trivial) covering map is from the 3-sphere, as in the use of quaternions.
To make a comparison, all the translations can be described using three numbers, and, as the succession of three consecutive linear movements along three perpendicular axes, and axes. That's the same for rotations, all the rotations can be described using three numbers, and, as the succession of three rotational movements around three axes that are perpendicular one to the next. This similarity between linear coordinates and angular coordinates makes Euler angles very intuitive, but unfortunately they suffer from the gimbal lock problem.
Read more about this topic: Gimbal Lock
Famous quotes containing the words lock, applied and/or mathematics:
“They lock me in this chair at eight a.m.
and there are no signs to tell the way,
just the radio beating to itself
and the song that remembers
more than I.”
—Anne Sexton (19281974)
“Any language is necessarily a finite system applied with different degrees of creativity to an infinite variety of situations, and most of the words and phrases we use are prefabricated in the sense that we dont coin new ones every time we speak.”
—David Lodge (b. 1935)
“The three main medieval points of view regarding universals are designated by historians as realism, conceptualism, and nominalism. Essentially these same three doctrines reappear in twentieth-century surveys of the philosophy of mathematics under the new names logicism, intuitionism, and formalism.”
—Willard Van Orman Quine (b. 1908)