Experiment and Its Interpretation
Fert and Grünberg studied electrical resistance of structures incorporating ferromagnetic and non-ferromagnetic materials. In particular, Fert worked on multilayer films, and Grünberg in 1986 discovered the antiferromagnetic exchange interaction in Fe/Cr films.
The GMR discovery work has been carried out on (001)Fe/(001) Cr superlattices. The Fe and Cr layers were deposited in a high vacuum on a (001) GaAs substrate kept at 20 ° C.
In Fe/Cr multilayers with 3-nm-thick iron layers, increasing the thickness of the non-magnetic Cr layers from 0.9 to 3 nm weakened the antiferromagnetic coupling between the Fe layers and reduced the demagnetization field. The latter also decreased when the sample was heated from 4.2 K to room temperature. Changing the thickness of the non-magnetic layers led to a significant reduction of the residual magnetization in the hysteresis loop. Electrical resistance changed by up to 50% with the external magnetic field at 4.2 K. Fert named the new effect giant magnetoresistance, to highlight its difference with the anisotropic magnetoresistance.
The discoverers suggested that the effect is based on spin-dependent scattering of electrons in the superlattice, particularly on the dependence of resistance of the layers on the relative orientations of magnetization and electron spins. The theory of GMR for different directions of the current was developed in the next few years. In 1989, Camley and Barnaś calculated the "current in plane" (CIP) geometry, where the current flows along the layers, in the classical approximation, whereas Levy et al. used the quantum formalism. The theory of the GMR for the current perpendicular to the layers (current perpendicular to the plane or CPP geometry), known as the Valet-Fert theory, was reported in 1993. Applications favor the CPP geometry because it results in a greater device sensitivity.
Read more about this topic: Giant Magnetoresistance
Famous quotes containing the word experiment:
“Everybodys a mad scientist, and life is their lab. Were all trying to experiment to find a way to live, to solve problems, to fend off madness and chaos.”
—David Cronenberg (b. 1943)