Relation With Sheaves
The idea of germ is behind the definition of sheaves and presheaves. A presheaf on a topological space X is an assignment of an Abelian group to each open set U in X. Typical examples of Abelian groups here are: real valued functions on U, differential forms on U, vector fields on U, holomorphic functions on U (when X is a complex space), constant functions on U and differential operators on U.
If then there is a restriction map, satisfying certain compatibility conditions. For a fixed x, one says that elements and are equivalent at x if there is a neighbourhood of x with resWU(f) = resWV(g) (both elements of ). The equivalence classes form the stalk at x of the presheaf . This equivalence relation is an abstraction of the germ equivalence described above.
Read more about this topic: Germ (mathematics)
Famous quotes containing the words relation with, relation and/or sheaves:
“There is a constant in the average American imagination and taste, for which the past must be preserved and celebrated in full-scale authentic copy; a philosophy of immortality as duplication. It dominates the relation with the self, with the past, not infrequently with the present, always with History and, even, with the European tradition.”
—Umberto Eco (b. 1932)
“The instincts of the ant are very unimportant, considered as the ants; but the moment a ray of relation is seen to extend from it to man, and the little drudge is seen to be a monitor, a little body with a mighty heart, then all its habits, even that said to be recently observed, that it never sleeps, become sublime.”
—Ralph Waldo Emerson (18031882)
“Being young you have not known
The fools triumph, nor yet
Love lost as soon as won,
Nor the best labourer dead
And all the sheaves to bind.”
—William Butler Yeats (18651939)