Germ (mathematics) - Examples

Examples

If and have additional structure, it is possible to define subsets of the set of all maps from X to Y or more generally sub-presheaves of a given presheaf and corresponding germs: some notable examples follow.

  • If are both topological spaces, the subset
of continuous functions defines germs of continuous functions.
  • If both and admit a differentiable structure, the subset
of -times continuously differentiable functions, the subset
of smooth functions and the subset
of analytic functions can be defined ( here is the ordinal for infinity; this is an abuse of notation, by analogy with and ∞), and then spaces of germs of (finitely) differentiable, smooth, analytic functions can be constructed.
  • If have a complex structure (for instance, are subsets of complex vector spaces), holomorphic functions between them can be defined, and therefore spaces of germs of holomorphic functions can be constructed.
  • If have an algebraic structure, then regular (and rational) functions between them can be defined, and germs of regular functions (and likewise rational) can be defined.

Read more about this topic:  Germ (mathematics)

Famous quotes containing the word examples:

    It is hardly to be believed how spiritual reflections when mixed with a little physics can hold people’s attention and give them a livelier idea of God than do the often ill-applied examples of his wrath.
    —G.C. (Georg Christoph)

    In the examples that I here bring in of what I have [read], heard, done or said, I have refrained from daring to alter even the smallest and most indifferent circumstances. My conscience falsifies not an iota; for my knowledge I cannot answer.
    Michel de Montaigne (1533–1592)

    Histories are more full of examples of the fidelity of dogs than of friends.
    Alexander Pope (1688–1744)