Germ (mathematics) - Examples

Examples

If and have additional structure, it is possible to define subsets of the set of all maps from X to Y or more generally sub-presheaves of a given presheaf and corresponding germs: some notable examples follow.

  • If are both topological spaces, the subset
of continuous functions defines germs of continuous functions.
  • If both and admit a differentiable structure, the subset
of -times continuously differentiable functions, the subset
of smooth functions and the subset
of analytic functions can be defined ( here is the ordinal for infinity; this is an abuse of notation, by analogy with and ∞), and then spaces of germs of (finitely) differentiable, smooth, analytic functions can be constructed.
  • If have a complex structure (for instance, are subsets of complex vector spaces), holomorphic functions between them can be defined, and therefore spaces of germs of holomorphic functions can be constructed.
  • If have an algebraic structure, then regular (and rational) functions between them can be defined, and germs of regular functions (and likewise rational) can be defined.

Read more about this topic:  Germ (mathematics)

Famous quotes containing the word examples:

    There are many examples of women that have excelled in learning, and even in war, but this is no reason we should bring ‘em all up to Latin and Greek or else military discipline, instead of needle-work and housewifry.
    Bernard Mandeville (1670–1733)

    It is hardly to be believed how spiritual reflections when mixed with a little physics can hold people’s attention and give them a livelier idea of God than do the often ill-applied examples of his wrath.
    —G.C. (Georg Christoph)

    In the examples that I here bring in of what I have [read], heard, done or said, I have refrained from daring to alter even the smallest and most indifferent circumstances. My conscience falsifies not an iota; for my knowledge I cannot answer.
    Michel de Montaigne (1533–1592)