George Peacock - Algebraic Theory

Algebraic Theory

Peacock's main contribution to mathematical analysis is his attempt to place algebra on a strictly logical basis. He founded what has been called the philological or symbolical school of mathematicians; to which Gregory, De Morgan and Boole belonged. His answer to Maseres and Frend was that the science of algebra consisted of two parts—arithmetical algebra and symbolical algebra—and that they erred in restricting the science to the arithmetical part. His view of arithmetical algebra is as follows: "In arithmetical algebra we consider symbols as representing numbers, and the operations to which they are submitted as included in the same definitions as in common arithmetic; the signs and denote the operations of addition and subtraction in their ordinary meaning only, and those operations are considered as impossible in all cases where the symbols subjected to them possess values which would render them so in case they were replaced by digital numbers; thus in expressions such as we must suppose and to be quantities of the same kind; in others, like, we must suppose greater than and therefore homogeneous with it; in products and quotients, like and we must suppose the multiplier and divisor to be abstract numbers; all results whatsoever, including negative quantities, which are not strictly deducible as legitimate conclusions from the definitions of the several operations must be rejected as impossible, or as foreign to the science."

Peacock's principle may be stated thus: the elementary symbol of arithmetical algebra denotes a digital, i.e., an integer number; and every combination of elementary symbols must reduce to a digital number, otherwise it is impossible or foreign to the science. If and are numbers, then is always a number; but is a number only when is less than . Again, under the same conditions, is always a number, but is really a number only when is an exact divisor of . Hence the following dilemma: Either must be held to be an impossible expression in general, or else the meaning of the fundamental symbol of algebra must be extended so as to include rational fractions. If the former horn of the dilemma is chosen, arithmetical algebra becomes a mere shadow; if the latter horn is chosen, the operations of algebra cannot be defined on the supposition that the elementary symbol is an integer number. Peacock attempts to get out of the difficulty by supposing that a symbol which is used as a multiplier is always an integer number, but that a symbol in the place of the multiplicand may be a fraction. For instance, in, can denote only an integer number, but may denote a rational fraction. Now there is no more fundamental principle in arithmetical algebra than that ; which would be illegitimate on Peacock's principle.

One of the earliest English writers on arithmetic is Robert Record, who dedicated his work to King Edward the Sixth. The author gives his treatise the form of a dialogue between master and scholar. The scholar battles long over this difficulty, -- that multiplying a thing could make it less. The master attempts to explain the anomaly by reference to proportion; that the product due to a fraction bears the same proportion to the thing multiplied that the fraction bears to unity. But the scholar is not satisfied and the master goes on to say: "If I multiply by more than one, the thing is increased; if I take it but once, it is not changed, and if I take it less than once, it cannot be so much as it was before. Then seeing that a fraction is less than one, if I multiply by a fraction, it follows that I do take it less than once." Whereupon the scholar replies, "Sir, I do thank you much for this reason, -- and I trust that I do perceive the thing."

The fact is that even in arithmetic the two processes of multiplication and division are generalized into a common multiplication; and the difficulty consists in passing from the original idea of multiplication to the generalized idea of a tensor, which idea includes compressing the magnitude as well as stretching it. Let denote an integer number; the next step is to gain the idea of the reciprocal of, not as but simply as . When and are compounded we get the idea of a rational fraction; for in general will not reduce to a number nor to the reciprocal of a number.

Suppose, however, that we pass over this objection; how does Peacock lay the foundation for general algebra? He calls it symbolical algebra, and he passes from arithmetical algebra to symbolical algebra in the following manner: "Symbolical algebra adopts the rules of arithmetical algebra but removes altogether their restrictions; thus symbolical subtraction differs from the same operation in arithmetical algebra in being possible for all relations of value of the symbols or expressions employed. All the results of arithmetical algebra which are deduced by the application of its rules, and which are general in form though particular in value, are results likewise of symbolical algebra where they are general in value as well as in form; thus the product of and which is when and are whole numbers and therefore general in form though particular in value, will be their product likewise when and are general in value as well as in form; the series for determined by the principles of arithmetical algebra when is any whole number, if it be exhibited in a general form, without reference to a final term, may be shown upon the same principle to the equivalent series for when is general both in form and value."

The principle here indicated by means of examples was named by Peacock the "principle of the permanence of equivalent forms," and at page 59 of the Symbolical Algebra it is thus enunciated: "Whatever algebraic forms are equivalent when the symbols are general in form, but specific in value, will be equivalent likewise when the symbols are general in value as well as in form."

For example, let, denote any integer numbers, but subject to the restrictions that is less than, and less than ; it may then be shown arithmetically that . Peacock's principle says that the form on the left side is equivalent to the form on the right side, not only when the said restrictions of being less are removed, but when, denote the most general algebraic symbol. It means that, may be rational fractions, or surds, or imaginary quantities, or indeed operators such as . The equivalence is not established by means of the nature of the quantity denoted; the equivalence is assumed to be true, and then it is attempted to find the different interpretations which may be put on the symbol.

It is not difficult to see that the problem before us involves the fundamental problem of a rational logic or theory of knowledge; namely, how are we able to ascend from particular truths to more general truths. If, denote integer numbers, of which is less than and less than, then .

It is first seen that the above restrictions may be removed, and still the above equation holds. But the antecedent is still too narrow; the true scientific problem consists in specifying the meaning of the symbols, which, and only which, will admit of the forms being equal. It is not to find "some meanings", but the "most general meaning", which allows the equivalence to be true. Let us examine some other cases; we shall find that Peacock's principle is not a solution of the difficulty; the great logical process of generalization cannot be reduced to any such easy and arbitrary procedure. When, denote integer numbers, it can be shown that.

According to Peacock the form on the left is always to be equal to the form on the right, and the meanings of, are to be found by interpretation. Suppose that takes the form of the incommensurate quantity, the base of the natural system of logarithms. A number is a degraded form of a complex quantity and a complex quantity is a degraded form of a quaternion; consequently one meaning which may be assigned to and is that of quaternion. Peacock's principle would lead us to suppose that, and denoting quaternions; but that is just what Hamilton, the inventor of the quaternion generalization, denies. There are reasons for believing that he was mistaken, and that the forms remain equivalent even under that extreme generalization of and ; but the point is this: it is not a question of conventional definition and formal truth; it is a question of objective definition and real truth. Let the symbols have the prescribed meaning, does or does not the equivalence still hold? And if it does not hold, what is the higher or more complex form which the equivalence assumes?

Read more about this topic:  George Peacock

Famous quotes containing the words algebraic and/or theory:

    I have no scheme about it,—no designs on men at all; and, if I had, my mode would be to tempt them with the fruit, and not with the manure. To what end do I lead a simple life at all, pray? That I may teach others to simplify their lives?—and so all our lives be simplified merely, like an algebraic formula? Or not, rather, that I may make use of the ground I have cleared, to live more worthily and profitably?
    Henry David Thoreau (1817–1862)

    We commonly say that the rich man can speak the truth, can afford honesty, can afford independence of opinion and action;—and that is the theory of nobility. But it is the rich man in a true sense, that is to say, not the man of large income and large expenditure, but solely the man whose outlay is less than his income and is steadily kept so.
    Ralph Waldo Emerson (1803–1882)