Product
The product of a geometric progression is the product of all terms. If all terms are positive, then it can be quickly computed by taking the geometric mean of the progression's first and last term, and raising that mean to the power given by the number of terms. (This is very similar to the formula for the sum of terms of an arithmetic sequence: take the arithmetic mean of the first and last term and multiply with the number of terms.)
- (if ).
Proof:
Let the product be represented by P:
- .
Now, carrying out the multiplications, we conclude that
- .
Applying the sum of arithmetic series, the expression will yield
- .
- .
We raise both sides to the second power:
- .
Consequently
- and
- ,
which concludes the proof.
Read more about this topic: Geometric Progression
Famous quotes containing the word product:
“[The political mind] is a strange mixture of vanity and timidity, of an obsequious attitude at one time and a delusion of grandeur at another time. The political mind is the product of men in public life who have been twice spoiled. They have been spoiled with praise and they have been spoiled with abuse.”
—Calvin Coolidge (18721933)
“Perhaps I am still very much of an American. That is to say, naïve, optimistic, gullible.... In the eyes of a European, what am I but an American to the core, an American who exposes his Americanism like a sore. Like it or not, I am a product of this land of plenty, a believer in superabundance, a believer in miracles.”
—Henry Miller (18911980)
“A gentleman opposed to their enfranchisement once said to me, Women have never produced anything of any value to the world. I told him the chief product of the women had been the men, and left it to him to decide whether the product was of any value.”
—Anna Howard Shaw (18471919)