A geometric series is the sum of the numbers in a geometric progression:
We can find a simpler formula for this sum by multiplying both sides of the above equation by 1 − r, and we'll see that
since all the other terms cancel. If r ≠ 1, we can rearrange the above to get the convenient formula for a geometric series:
If one were to begin the sum not from k=0, but from a higher term, say m, then
Differentiating this formula with respect to r allows us to arrive at formulae for sums of the form
For example:
For a geometric series containing only even powers of r multiply by 1 − r2 :
Then
Equivalently, take r2 as the common ratio and use the standard formulation.
For a series with only odd powers of r
and
Read more about this topic: Geometric Progression
Famous quotes containing the words geometric and/or series:
“In mathematics he was greater
Than Tycho Brahe, or Erra Pater:
For he, by geometric scale,
Could take the size of pots of ale;
Resolve, by sines and tangents straight,
If bread and butter wanted weight;
And wisely tell what hour o th day
The clock doth strike, by algebra.”
—Samuel Butler (16121680)
“A sophistical rhetorician, inebriated with the exuberance of his own verbosity, and gifted with an egotistical imagination that can at all times command an interminable and inconsistent series of arguments to malign an opponent and to glorify himself.”
—Benjamin Disraeli (18041881)