Elementary Properties
The n-th term of a geometric sequence with initial value a and common ratio r is given by
Such a geometric sequence also follows the recursive relation
- for every integer
Generally, to check whether a given sequence is geometric, one simply checks whether successive entries in the sequence all have the same ratio.
The common ratio of a geometric series may be negative, resulting in an alternating sequence, with numbers switching from positive to negative and back. For instance
- 1, −3, 9, −27, 81, −243, ...
is a geometric sequence with common ratio −3.
The behaviour of a geometric sequence depends on the value of the common ratio.
If the common ratio is:
- Positive, the terms will all be the same sign as the initial term.
- Negative, the terms will alternate between positive and negative.
- Greater than 1, there will be exponential growth towards positive infinity.
- 1, the progression is a constant sequence.
- Between −1 and 1 but not zero, there will be exponential decay towards zero.
- −1, the progression is an alternating sequence (see alternating series)
- Less than −1, for the absolute values there is exponential growth towards positive and negative infinity (due to the alternating sign).
Geometric sequences (with common ratio not equal to −1,1 or 0) show exponential growth or exponential decay, as opposed to the Linear growth (or decline) of an arithmetic progression such as 4, 15, 26, 37, 48, … (with common difference 11). This result was taken by T.R. Malthus as the mathematical foundation of his Principle of Population. Note that the two kinds of progression are related: exponentiating each term of an arithmetic progression yields a geometric progression, while taking the logarithm of each term in a geometric progression with a positive common ratio yields an arithmetic progression.
An interesting result of the definition of a geometric progression is that for any value of the common ratio, any three consecutive terms a, b and c will satisfy the following equation:
Read more about this topic: Geometric Progression
Famous quotes containing the words elementary and/or properties:
“Listen. We converse as we liveby repeating, by combining and recombining a few elements over and over again just as nature does when of elementary particles it builds a world.”
—William Gass (b. 1924)
“The reason why men enter into society, is the preservation of their property; and the end why they choose and authorize a legislative, is, that there may be laws made, and rules set, as guards and fences to the properties of all the members of the society: to limit the power, and moderate the dominion, of every part and member of the society.”
—John Locke (16321704)