Definition
The geometric genus can be defined for non-singular complex projective varieties and more generally for complex manifolds as the Hodge number hn,0 (equal to h0,n by Serre duality), that is, the dimension of the canonical linear system.
In other words for a variety V of complex dimension n it is the number of linearly independent holomorphic n-forms to be found on V. This definition, as the dimension of
- H0(V,Ωn)
then carries over to any base field, when Ω is taken to be the sheaf of Kähler differentials and the power is the (top) exterior power, the canonical line bundle.
The geometric genus is the first invariant pg = P1 of a sequence of invariants Pn called the plurigenera.
Read more about this topic: Geometric Genus
Famous quotes containing the word definition:
“The very definition of the real becomes: that of which it is possible to give an equivalent reproduction.... The real is not only what can be reproduced, but that which is always already reproduced. The hyperreal.”
—Jean Baudrillard (b. 1929)
“The physicians say, they are not materialists; but they are:MSpirit is matter reduced to an extreme thinness: O so thin!But the definition of spiritual should be, that which is its own evidence. What notions do they attach to love! what to religion! One would not willingly pronounce these words in their hearing, and give them the occasion to profane them.”
—Ralph Waldo Emerson (18031882)
“No man, not even a doctor, ever gives any other definition of what a nurse should be than thisdevoted and obedient. This definition would do just as well for a porter. It might even do for a horse. It would not do for a policeman.”
—Florence Nightingale (18201910)