Geometric Distribution - Related Distributions

Related Distributions

  • The geometric distribution Y is a special case of the negative binomial distribution, with r = 1. More generally, if Y1, ..., Yr are independent geometrically distributed variables with parameter p, then the sum
follows a negative binomial distribution with parameters r and 1-p.
  • If Y1, ..., Yr are independent geometrically distributed variables (with possibly different success parameters pm), then their minimum
is also geometrically distributed, with parameter
  • Suppose 0 < r < 1, and for k = 1, 2, 3, ... the random variable Xk has a Poisson distribution with expected value r k/k. Then
has a geometric distribution taking values in the set {0, 1, 2, ...}, with expected value r/(1 − r).
  • The exponential distribution is the continuous analogue of the geometric distribution. If X is an exponentially distributed random variable with parameter λ, then
where is the floor (or greatest integer) function, is a geometrically distributed random variable with parameter p = 1 − eλ (thus λ = −ln(1 − p)) and taking values in the set {0, 1, 2, ...}. This can be used to generate geometrically distributed pseudorandom numbers by first generating exponentially distributed pseudorandom numbers from a uniform pseudorandom number generator: then is geometrically distributed with parameter, if is uniformly distributed in .

Read more about this topic:  Geometric Distribution

Famous quotes containing the word related:

    Perhaps it is nothingness which is real and our dream which is non-existent, but then we feel think that these musical phrases, and the notions related to the dream, are nothing too. We will die, but our hostages are the divine captives who will follow our chance. And death with them is somewhat less bitter, less inglorious, perhaps less probable.
    Marcel Proust (1871–1922)