Geometric Distribution - Moments and Cumulants

Moments and Cumulants

The expected value of a geometrically distributed random variable X is 1/p and the variance is (1 − p)/p2:

\mathrm{E}(X) = \frac{1}{p}, \qquad\mathrm{var}(X) = \frac{1-p}{p^2}.

Similarly, the expected value of the geometrically distributed random variable Y is (1 − p)/p, and its variance is (1 − p)/p2:

\mathrm{E}(Y) = \frac{1-p}{p}, \qquad\mathrm{var}(Y) = \frac{1-p}{p^2}.

Let μ = (1 − p)/p be the expected value of Y. Then the cumulants of the probability distribution of Y satisfy the recursion

Outline of proof: That the expected value is (1 − p)/p can be shown in the following way. Let Y be as above. Then


\begin{align}
\mathrm{E}(Y) & {} =\sum_{k=0}^\infty (1-p)^k p\cdot k \\
& {} =p\sum_{k=0}^\infty(1-p)^k k \\
& {} = p\left(1-p) \\
& {} =-p(1-p)\frac{d}{dp}\frac{1}{p}=\frac{1-p}{p}.
\end{align}

(The interchange of summation and differentiation is justified by the fact that convergent power series converge uniformly on compact subsets of the set of points where they converge.)

Read more about this topic:  Geometric Distribution

Famous quotes containing the word moments:

    The incomprehensibleness of women is an old theory, but what is that to the curious wondering observation with which wives, mothers, and sisters watch the other unreasoning animal in those moments when he has snatched the reins out of their hands, and is not to be spoken to!... It is best to let him come to, and feel his own helplessness.
    Margaret Oliphant (1828–1897)