Geometric Calculus - Relation To Differential Forms

Relation To Differential Forms

In a local coordinate system (x1, ..., xn), the coordinate differentials dx1, ..., dxn form a basic set of one-forms within the coordinate chart. Given a multi-index i1, ..., ik with 1 ≤ ipn for 1 ≤ pk, we can define a k-form

We can alternatively introduce a k-grade multivector A as

and a measure

\begin{align}\mathrm{d}^kX &= \left(\mathrm{d}x^{i_1} e_{i_1}\right) \wedge \left(\mathrm{d}x^{i_2}e_{i_2}\right) \wedge\cdots\wedge \left(\mathrm{d}x^{i_k}e_{i_k}\right) \\
&= \left( e_{i_1}\wedge e_{i_2}\wedge\cdots\wedge e_{i_k} \right) \mathrm{d}x^{i_1} \mathrm{d}x^{i_2} \cdots \mathrm{d}x^{i_k}\end{align}.

Apart from a subtle difference in meaning for the exterior product with respect to differential forms versus the exterior product with respect to vectors, we see the correspondences of the differential form

its derivative

and its Hodge dual

embed the theory of differential forms within geometric calculus.

Read more about this topic:  Geometric Calculus

Famous quotes containing the words relation to, relation, differential and/or forms:

    The foregoing generations beheld God and nature face to face; we, through their eyes. Why should not we also enjoy an original relation to the universe? Why should not we have a poetry and philosophy of insight and not of tradition, and a religion by revelation to us, and not the history of theirs?
    Ralph Waldo Emerson (1803–1882)

    There is undoubtedly something religious about it: everyone believes that they are special, that they are chosen, that they have a special relation with fate. Here is the test: you turn over card after card to see in which way that is true. If you can defy the odds, you may be saved. And when you are cleaned out, the last penny gone, you are enlightened at last, free perhaps, exhilarated like an ascetic by the falling away of the material world.
    Andrei Codrescu (b. 1947)

    But how is one to make a scientist understand that there is something unalterably deranged about differential calculus, quantum theory, or the obscene and so inanely liturgical ordeals of the precession of the equinoxes.
    Antonin Artaud (1896–1948)

    The most passionate, consistent, extreme and implacable enemy of the Enlightenment and ... all forms of rationalism ... was Johann Georg Hamann. His influence, direct and indirect, upon the romantic revolt against universalism and scientific method ... was considerable and perhaps crucial.
    Isaiah Berlin (b. 1909)