History and Nomenclature of The Time Scale
In Ancient Greece, Aristotle saw that fossil seashells from rocks were similar to those found on the beach and inferred that the fossils were once part of living animals. He reasoned that the positions of land and sea had changed over long periods of time. Leonardo da Vinci concurred with Aristotle's view that fossils were the remains of ancient life.
The 11th-century Persian geologist Avicenna (Ibn Sina) and the 13th century Dominican bishop Albertus Magnus (Albert of Saxony) extended Aristotle's explanation into a theory of a petrifying fluid. Avicenna also first proposed one of the principles underlying geologic time scales, the law of superposition of strata, while discussing the origins of mountains in The Book of Healing in 1027.
According to Nathan Sivin, later in the 11th century, the Chinese naturalist, Shen Kuo (1031–1095), also recognized the concept of 'deep time'.
The principles underlying geologic (geological) time scales were later laid down by Nicholas Steno in the late 17th century. Steno argued that rock layers (or strata) are laid down in succession, and that each represents a "slice" of time. He also formulated the law of superposition, which states that any given stratum is probably older than those above it and younger than those below it. While Steno's principles were simple, applying them to real rocks proved complex. Over the course of the 18th century geologists realized that:
- Sequences of strata were often eroded, distorted, tilted, or even inverted after deposition;
- Strata laid down at the same time in different areas could have entirely different appearances;
- The strata of any given area represented only part of the Earth's long history.
The first serious attempts to formulate a geological time scale that could be applied anywhere on Earth were made in the late 18th century. The most influential of those early attempts (championed by Abraham Werner, among others) divided the rocks of the Earth's crust into four types: Primary, Secondary, Tertiary, and Quaternary. Each type of rock, according to the theory, formed during a specific period in Earth history. It was thus possible to speak of a "Tertiary Period" as well as of "Tertiary Rocks." Indeed, "Tertiary" (now Paleocene - Pliocene) and "Quaternary" (now Pleistocene and Holocene) remained in use as names of geological periods well into the 20th century.
The Neptunist theories popular at this time (expounded by Werner) proposed that all rocks had precipitated out of a single enormous flood. A major shift in thinking came when James Hutton presented his Theory of the Earth; or, an Investigation of the Laws Observable in the Composition, Dissolution, and Restoration of Land Upon the Globe before the Royal Society of Edinburgh in March and April 1785. It has been said that "as things appear from the perspective of the 20th century, James Hutton in those reading became the founder of modern geology" Hutton proposed that the interior of the Earth was hot, and that this heat was the engine which drove the creation of new rock: land was eroded by air and water and deposited as layers in the sea; heat then consolidated the sediment into stone, and uplifted it into new lands. This theory was dubbed "Plutonist" in contrast to the flood-oriented theory.
The identification of strata by the fossils they contained, pioneered by William Smith, Georges Cuvier, Jean d'Omalius d'Halloy, and Alexandre Brogniart in the early 19th century, enabled geologists to divide Earth history more precisely. It also enabled them to correlate strata across national (or even continental) boundaries. If two strata (however distant in space or different in composition) contained the same fossils, chances were good that they had been laid down at the same time. Detailed studies between 1820 and 1850 of the strata and fossils of Europe produced the sequence of geological periods still used today.
The process was dominated by British geologists, and the names of the periods reflect that dominance. The "Cambrian", (the classical name for Wales) and the "Ordovician", and "Silurian", named after ancient Welsh tribes, were periods defined using stratigraphic sequences from Wales. The "Devonian" was named for the English county of Devon, and the name "Carboniferous" was simply an adaptation of "the Coal Measures", the old British geologists' term for the same set of strata. The "Permian" was named after Perm, Russia, because it was defined using strata in that region by Scottish geologist Roderick Murchison. However, some periods were defined by geologists from other countries. The "Triassic" was named in 1834 by a German geologist Friedrich Von Alberti from the three distinct layers (Latin trias meaning triad) —red beds, capped by chalk, followed by black shales— that are found throughout Germany and Northwest Europe, called the 'Trias'. The "Jurassic" was named by a French geologist Alexandre Brogniart for the extensive marine limestone exposures of the Jura Mountains. The "Cretaceous" (from Latin creta meaning 'chalk') as a separate period was first defined by Belgian geologist Jean d'Omalius d'Halloy in 1822, using strata in the Paris basin and named for the extensive beds of chalk (calcium carbonate deposited by the shells of marine invertebrates).
British geologists were also responsible for the grouping of periods into Eras and the subdivision of the Tertiary and Quaternary periods into epochs. In 1841 John Phillips published the first global geological time scale based on the types of fossils found in each era. Phillips' scale helped standardize the use of terms like Paleozoic (which he extended to cover a larger period than it had in previous usage), and Mesozoic (which he invented).
When William Smith and Sir Charles Lyell first recognized that rock strata represented successive time periods, time scales could be estimated only very imprecisely since various kinds of rates of change used in estimation were highly variable. While creationists had been proposing dates of around six or seven thousand years for the age of the Earth based on the Bible, early geologists were suggesting millions of years for geologic periods with some even suggesting a virtually infinite age for the Earth. Geologists and paleontologists constructed the geologic table based on the relative positions of different strata and fossils, and estimated the time scales based on studying rates of various kinds of weathering, erosion, sedimentation, and lithification. Until the discovery of radioactivity in 1896 and the development of its geological applications through radiometric dating during the first half of the 20th century (pioneered by such geologists as Arthur Holmes) which allowed for more precise absolute dating of rocks, the ages of various rock strata and the age of the Earth were the subject of considerable debate.
The first geologic time scale that included absolute dates was eventually published in 1913 by the British geologist Arthur Holmes. He greatly furthered the newly created discipline of geochronology and published the world renowned book The Age of the Earth in which he estimated the Earth's age to be at least 1.6 billion years.
In 1977, the Global Commission on Stratigraphy (now the International Commission on Stratigraphy) started an effort to define global references (Global Boundary Stratotype Sections and Points) for geologic periods and faunal stages. The commission's most recent work is described in the 2004 geologic time scale of Gradstein et al. A UML model for how the timescale is structured, relating it to the GSSP, is also available.
Read more about this topic: Geologic Time Scale
Famous quotes containing the words history and, history, time and/or scale:
“The basic idea which runs right through modern history and modern liberalism is that the public has got to be marginalized. The general public are viewed as no more than ignorant and meddlesome outsiders, a bewildered herd.”
—Noam Chomsky (b. 1928)
“The history of his present majesty, is a history of unremitting injuries and usurpations ... all of which have in direct object the establishment of an absolute tyranny over these states. To prove this, let facts be submitted to a candid world, for the truth of which we pledge a faith yet unsullied by falsehood.”
—Thomas Jefferson (17431826)
“God will take care of you for me. I am my Gods. I belong to him, I go a short time before you, and I want to meet all in heaven, both white and black.”
—Andrew Jackson (17671845)
“It is in vain that we would circumscribe the power of one half of our race, and that half by far the most important and influential. If they exert it not for good, they will for evil; if they advance not knowledge, they will perpetuate ignorance. Let women stand where they may in the scale of improvement, their position decides that of the race.”
—Frances Wright (17951852)