Cartesian Coordinates
Every point that is expressed in ellipsoidal coordinates can be expressed as an x y z (Cartesian) coordinate. Cartesian coordinates simplify many mathematical calculations. The origin is usually the center of mass of the earth, a point close to the Earth's center of figure.
With the origin at the center of the ellipsoid, the conventional setup is the expected right-hand:
Z-axis along the axis of the ellipsoid, positive northward
X- and Y-axis in the plane of the equator, X-axis positive toward 0 degrees longitude and Y-axis positive toward 90 degrees east longitude
An example is the NGS data for a brass disk near Donner Summit, in California. Given the dimensions of the ellipsoid, the conversion from lat/lon/height-above-ellipsoid coordinates to X-Y-Z is straightforward—calculate the X-Y-Z for the given lat-lon on the surface of the ellipsoid and add the X-Y-Z vector that is perpendicular to the ellipsoid there and has length equal to the point's height above the ellipsoid. The reverse conversion is harder: given X-Y-Z we can immediately get longitude. See "Geodetic system." Using Bowring's formula in 1976 Survey Review the first iteration gives latitude correct within degree as long as the point is within 10000 meters above or 5000 meters below the ellipsoid.
Read more about this topic: Geographic Coordinate System