Positional Cloning
Positional cloning is a method of gene identification in which a gene for a specific phenotype is identified only by its approximate chromosomal location (but not the function); this is known as the candidate region. Initially, the candidate region can be defined using techniques such as linkage analysis, and positional cloning is then used to narrow the candidate region until the gene and its mutations are found. Positional cloning typically involves the isolation of partially overlapping DNA segments from genomic libraries to progress along the chromosome toward a specific gene. During the course of positional cloning, one needs to determine whether the DNA segment currently under consideration is part of the gene.
Tests used for this purpose include cross-species hybridization, identification of unmethylated CpG islands, exon trapping, direct cDNA selection, computer analysis of DNA sequence, mutation screening in affected individuals, and tests of gene expression. For genomes in which the regions of genetic polymorphisms are known, positional cloning involves identifying polymorphisms that flank the mutation. This process requires that DNA fragments from the closest known genetic marker are progressively cloned and sequenced, getting closer to the mutant allele with each new clone. This process produces a contig map of the locus and is known as chromosome walking. With the completion of genome sequencing projects such as the Human Genome Project, modern positional cloning can use ready-made contigs from the genome sequence databases directly.
For each new DNA clone a polymorphism is identified and tested in the mapping population for its recombination frequency compared to the mutant phenotype. When the DNA clone is at or close to the mutant allele, the recombination frequency should be close to zero. If the chromosome walk proceeds through the mutant allele, the new polymorphisms will start to show increase in recombination frequency compared to the mutant phenotype. Depending on the size of the mapping population, the mutant allele can be narrowed down to a small region (<30 Kb). Sequence comparison between wild type and mutant DNA in that region is then required to locate the DNA mutation that causes the phenotypic difference.
Modern positional cloning can more directly extract information from genomic sequencing projects and existing data by analyzing the genes in the candidate region. Potential disease genes from the candidate region can then be prioritized, potentially reducing the amount of work involved. Genes with expression patterns consistent with the disease phenotype, showing a (putative) function related to the phenotype, or homologous to another gene linked to the phenotype are all priority candidates. Generalization of positional cloning techniques in this manner is also known as positional gene discovery.
Positional cloning is an effective method to isolate disease genes in an unbiased manner, and it has been used to identify disease genes for Duchenne muscular dystrophy, Huntington's disease, and Cystic fibrosis. However, complications in the analysis arise if the disease exhibits locus heterogeneity.
Read more about this topic: Genetic Screen
Famous quotes containing the word cloning:
“Language is as real, as tangible, in our lives as streets, pipelines, telephone switchboards, microwaves, radioactivity, cloning laboratories, nuclear power stations.”
—Adrienne Rich (b. 1929)