Generic Point - History

History

In the foundational approach of André Weil, developed in his Foundations of Algebraic Geometry, generic points played an important role, but were handled in a different manner. For an algebraic variety V over a field K, generic points of V were a whole class of points of V taking values in a universal domain Ω, an algebraically closed field containing K but also an infinite supply of fresh indeterminates. This approach worked, without any need to deal directly with the topology of V (K-Zariski topology, that is), because the specializations could all be discussed at the field level (as in the valuation theory approach to algebraic geometry, popular in the 1930s).

This was at a cost of there being a huge collection of equally-generic points. Oscar Zariski, a colleague of Weil's at São Paulo just after World War II, always insisted that generic points should be unique. (This can be put back into topologists' terms: Weil's idea fails to give a Kolmogorov space and Zariski thinks in terms of the Kolmogorov quotient.)

In the rapid foundational changes of the 1950s Weil's approach became obsolete. In scheme theory, though, from 1957, generic points returned: this time à la Zariski. For example for R a discrete valuation ring, Spec(R) consists of two points, a generic point (coming from the prime ideal {0}) and a closed point or special point coming from the unique maximal ideal, For morphisms to Spec(R), the fiber above the special point is the special fiber, an important concept for example in reduction modulo p, monodromy theory and other theories about degeneration. The generic fiber, equally, is the fiber above the generic point. Geometry of degeneration is largely then about the passage from generic to special fibers, or in other words how specialization of parameters affects matters. (For a discrete valuation ring the topological space in question is the Sierpinski space of topologists. Other local rings have unique generic and special points, but a more complicated spectrum, since they represent general dimensions. The discrete valuation case is much like the complex unit disk, for these purposes.)

Read more about this topic:  Generic Point

Famous quotes containing the word history:

    My good friends, this is the second time in our history that there has come back from Germany to Downing Street peace with honour. I believe it is peace for our time. We thank you from the bottom of our hearts. And now I recommend you to go home and sleep quietly in your beds.
    Neville Chamberlain (1869–1940)

    The principle that human nature, in its psychological aspects, is nothing more than a product of history and given social relations removes all barriers to coercion and manipulation by the powerful.
    Noam Chomsky (b. 1928)

    You treat world history as a mathematician does mathematics, in which nothing but laws and formulas exist, no reality, no good and evil, no time, no yesterday, no tomorrow, nothing but an eternal, shallow, mathematical present.
    Hermann Hesse (1877–1962)