Generalised Logistic Function - Gradient

Gradient

When estimating parameters from data, it is often necessary to compute the partial derivatives of the parameters at a given data point t (see ):


\begin{align}
\frac{\partial Y}{\partial A} &= 1 - (1 + Qe^{-B(t-M)})^{-1/\nu}\\
\frac{\partial Y}{\partial K} &= (1 + Qe^{-B(t-M)})^{-1/\nu}\\
\frac{\partial Y}{\partial B} &= \frac{(K-A)(t-M)Qe^{-B(t-M)}}{\nu(1 + Qe^{-B(t-M)})^{\frac{1}{\nu}+1}}\\
\frac{\partial Y}{\partial \nu} &= \frac{(K-A)\ln(1 + Qe^{-B(t-M)})}{\nu^2(1 + Qe^{-B(t-M)})^{\frac{1}{\nu}}}\\
\frac{\partial Y}{\partial Q} &= -\frac{(K-A)e^{-B(t-M)}}{\nu(1 + Qe^{-B(t-M)})^{\frac{1}{\nu}+1}}\\
\frac{\partial Y}{\partial M} &= -\frac{(K-A)Be^{-B(t-M)}}{\nu(1 + Qe^{-B(t-M)})^{\frac{1}{\nu}+1}}
\end{align}

Read more about this topic:  Generalised Logistic Function