Generalised Circle - Equation in The Extended Complex Plane

Equation in The Extended Complex Plane

The extended plane of inversive geometry can be identified with the extended complex plane, so that equations of complex numbers can be used to describe lines, circles and inversions.

A circle Γ is the set of points z in a plane that lie at radius r from a center point γ.

Using the complex plane, we can treat γ as a complex number and circle Γ as a set of complex numbers.

Using the property that a complex number multiplied by its conjugate gives us the square of the modulus of the number, and that its modulus is its Euclidean distance from the origin, we can express the equation for Γ as follows:

We can multiply this by a real constant A to get an equation of the form


A z \bar z + B z + C \bar z + D = 0

where A and D are real, and B and C are complex conjugates. Reversing the steps, we see that in order for this to be a circle, the radius squared must be equal to BC/A^2 - D/A > 0. So the above equation defines a generalized circle whenever AD < BC. Note that when A is zero, this equation defines a straight line.

Read more about this topic:  Generalised Circle

Famous quotes containing the words equation, extended, complex and/or plane:

    A nation fights well in proportion to the amount of men and materials it has. And the other equation is that the individual soldier in that army is a more effective soldier the poorer his standard of living has been in the past.
    Norman Mailer (b. 1923)

    The civility which money will purchase, is rarely extended to those who have none.
    Charles Dickens (1812–1870)

    All of life and human relations have become so incomprehensibly complex that, when you think about it, it becomes terrifying and your heart stands still.
    Anton Pavlovich Chekhov (1860–1904)

    Even though I had let them choose their own socks since babyhood, I was only beginning to learn to trust their adult judgment.. . . I had a sensation very much like the moment in an airplane when you realize that even if you stop holding the plane up by gripping the arms of your seat until your knuckles show white, the plane will stay up by itself. . . . To detach myself from my children . . . I had to achieve a condition which might be called loving objectivity.
    —Anonymous Parent of Adult Children. Ourselves and Our Children, by Boston Women’s Health Book Collective, ch. 5 (1978)