General Type
Further information: General typeGeneral position is a property of configurations of points, or more generally other subvarieties (lines in general position, so no three concurrent, and the like) – it is an extrinsic notion, which depends on an embedding as a subvariety. Informally, subvarieties are in general position if they cannot be described more simply than others. An intrinsic analog of general position is general type, and corresponds to a variety which cannot be described by simpler polynomial equations than others. This is formalized by the notion of Kodaira dimension of a variety, and by this measure projective spaces are the most special varieties, though there are other equally special ones, meaning having negative Kodaira dimension. For algebraic curves, the resulting classification is: projective line, torus, higher genus surfaces, and similar classifications occur in higher dimensions, notably the Enriques–Kodaira classification of algebraic surfaces.
Read more about this topic: General Position
Famous quotes containing the words general and/or type:
“Even more important than the discovery of Columbus, which we are gathered together to celebrate, is the fact that the general government has just discovered women.”
—Bertha Honore Potter Palmer (18491918)
“The ideal American type is perfectly expressed by the Protestant, individualist, anti-conformist, and this is the type that is in the process of disappearing. In reality there are few left.”
—Orson Welles (19151984)