General Position - General Linear Position

A set of at least points in -dimensional Euclidean space is said to be in general linear position (or just general position) if no hyperplane contains more than points — i.e. the points do not satisfy any more linear relations than they must. A set containing points for is in general linear position if and only if no -dimensional flat contains all points.

A set of points in general linear position is also said to be affinely independent (this is the affine analog of linear independence of vectors, or more precisely of maximal rank), and points in general linear position in affine d-space are an affine basis. See affine transformation for more.

Similarly, n vectors in an n-dimensional vector space are linearly independent if and only if the points they define in projective space (of dimension ) are in general linear position.

If a set of points is not in general linear position, it is called a degenerate case or degenerate configuration — they satisfy a linear relation that need not always hold.

A fundamental application is that, in the plane, five points determine a conic, as long as the points are in general linear position (no three are collinear).

Read more about this topic:  General Position

Famous quotes containing the words general and/or position:

    The general review of the past tends to satisfy me with my political life. No man, I suppose, ever came up to his ideal. The first half [of] my political life was first to resist the increase of slavery and secondly to destroy it.... The second half of my political life has been to rebuild, and to get rid of the despotic and corrupting tendencies and the animosities of the war, and other legacies of slavery.
    Rutherford Birchard Hayes (1822–1893)

    Your views are now my own.
    Marvin Cohen, U.S. author and humorist.

    In conversation, after having taken a strong position in an argument and heard a complete refutation of his position.