General Number Field Sieve - Number Fields

Number Fields

Suppose f is an k-degree polynomial over Q (the rational numbers), and r is a complex root of f. Then, f(r) = 0, which can be rearranged to express rk as a linear combination of powers of r less than k. This equation can be used to reduce away any powers of rk. For example, if f(x) = x2 + 1 and r is the imaginary unit i, then i2 + 1=0, or i2 = −1. This allows us to define the complex product:

(a+bi)(c+di) = ac + (ad+bc)i + (bd)i2 = (acbd) + (ad+bc)i.

In general, this leads directly to the algebraic number field Q, which can be defined as the set of real numbers given by:

ak−1rk−1 + ... + a1r1 + a0r0, where a0,...,al−1 in Q.

The product of any two such values can be computed by taking the product as polynomials, then reducing any powers of rk as described above, yielding a value in the same form. To ensure that this field is actually k-dimensional and does not collapse to an even smaller field, it is sufficient that f is an irreducible polynomial. Similarly, one may define the number field ring Z as the subset of Q where a0,...,ak−1 are restricted to be integers.

Read more about this topic:  General Number Field Sieve

Famous quotes containing the words number and/or fields:

    As Jerome expanded, its chances for the title, “the toughest little town in the West,” increased and when it was incorporated in 1899 the citizens were able to support the claim by pointing to the number of thick stone shutters on the fronts of all saloons, gambling halls, and other places of business for protection against gunfire.
    —Administration in the State of Ariz, U.S. public relief program (1935-1943)

    I don’t pop my cork for ev’ry guy I see.
    —Dorothy Fields (1904–1974)