Number Fields
Suppose f is an k-degree polynomial over Q (the rational numbers), and r is a complex root of f. Then, f(r) = 0, which can be rearranged to express rk as a linear combination of powers of r less than k. This equation can be used to reduce away any powers of r ≥ k. For example, if f(x) = x2 + 1 and r is the imaginary unit i, then i2 + 1=0, or i2 = −1. This allows us to define the complex product:
- (a+bi)(c+di) = ac + (ad+bc)i + (bd)i2 = (ac − bd) + (ad+bc)i.
In general, this leads directly to the algebraic number field Q, which can be defined as the set of real numbers given by:
- ak−1rk−1 + ... + a1r1 + a0r0, where a0,...,al−1 in Q.
The product of any two such values can be computed by taking the product as polynomials, then reducing any powers of r ≥ k as described above, yielding a value in the same form. To ensure that this field is actually k-dimensional and does not collapse to an even smaller field, it is sufficient that f is an irreducible polynomial. Similarly, one may define the number field ring Z as the subset of Q where a0,...,ak−1 are restricted to be integers.
Read more about this topic: General Number Field Sieve
Famous quotes containing the words number and/or fields:
“A good marriage ... is a sweet association in life: full of constancy, trust, and an infinite number of useful and solid services and mutual obligations.”
—Michel de Montaigne (15331592)
“It matters little comparatively whether the fields fill the farmers barn. The true husbandman will cease from anxiety, as the squirrels manifest no concern whether the woods will bear chestnuts this year or not, and finish his labor with every day, relinquishing all claim to the produce of his fields, and sacrificing in his mind not only his first but his last fruits also.”
—Henry David Thoreau (18171862)