General Number Field Sieve - Method

Method

Two polynomials f(x) and g(x) of small degrees d and e are chosen, which have integer coefficients, which are irreducible over the rationals, and which, when interpreted mod n, have a common integer root m. An optimal strategy for choosing these polynomials is not known; one simple method is to pick a degree d for a polynomial, consider the expansion of n in base m (allowing digits between −m and m) for a number of different m of order n1/d, and pick f(x) as the polynomial with the smallest coefficients and g(x) as xm.

Consider the number field rings Z and Z, where r1 and r2 are roots of the polynomials f and g. Since f is of degree d with integer coefficients, if a and b are integers, then so will be bd·f(a/b), which we call r. Similarly, s = be·g(a/b) is an integer. The goal is to find integer values of a and b that simultaneously make r and s smooth relative to the chosen basis of primes. If a and b are small, then r and s will be small too, about the size of m, and we have a better chance for them to be smooth at the same time. The current best-known approach for this search is lattice sieving; to get acceptable yields, it is necessary to use a large factor base.

Having enough such pairs, using Gaussian elimination, one can get products of certain r and of the corresponding s to be squares at the same time. A slightly stronger condition is needed—that they are norms of squares in our number fields, but that condition can be achieved by this method too. Each r is a norm of ar1b and hence that the product of the corresponding factors ar1b is a square in Z, with a "square root" which can be determined (as a product of known factors in Z)—it will typically be represented as an irrational algebraic number. Similarly, the product of the factors ar2b is a square in Z, with a "square root" which also can be computed. It should be remarked that the use of Gaussian elimination does not give the optimal run time of the algorithm. Instead, sparse matrix solving algorithms such as Block Lanczos or Block Wiedemann are used.

Since m is a root of both f and g mod n, there are homomorphisms from the rings Z and Z to the ring Z/nZ (the integers mod n), which map r1 and r2 to m, and these homomorphisms will map each "square root" (typically not represented as a rational number) into its integer representative. Now the product of the factors amb mod n can be obtained as a square in two ways—one for each homomorphism. Thus, one can find two numbers x and y, with x2 − y2 divisible by n and again with probability at least one half we get a factor of n by finding the greatest common divisor of n and xy.

Read more about this topic:  General Number Field Sieve

Famous quotes containing the word method:

    A method of child-rearing is not—or should not be—a whim, a fashion or a shibboleth. It should derive from an understanding of the developing child, of his physical and mental equipment at any given stage, and, therefore, his readiness at any given stage to adapt, to learn, to regulate his behavior according to parental expectations.
    Selma H. Fraiberg (20th century)

    Protestantism has the method of Jesus with His secret too much left out of mind; Catholicism has His secret with His method too much left out of mind; neither has His unerring balance, His intuition, His sweet reasonableness. But both have hold of a great truth, and get from it a great power.
    Matthew Arnold (1822–1888)

    Women are denied masturbation even more severely than men and that’s another method of control—they’re not taught to please themselves.... Most women—it takes them a while to warm up to the “situation” but once they get into it, I’m sure they’re going to get just as hooked as—well, everyone I know is!
    Lydia Lunch (b. 1959)