Special Linear Group
The special linear group, SL(n,F), is the group of all matrices with determinant 1. They are special in that they lie on a subvariety — they satisfy a polynomial equation (as the determinant is a polynomial in the entries). Matrices of this type form a group as the determinant of the product of two matrices is the product of the determinants of each matrix. SL(n, F) is a normal subgroup of GL(n,F).
If we write F× for the multiplicative group of F (excluding 0), then the determinant is a group homomorphism
- det: GL(n,F) → F×.
that is surjective and its kernel is the special linear group. Therefore, by the first isomorphism theorem, GL(n,F)/SL(n,F) is isomorphic to F×. In fact, GL(n,F) can be written as a semidirect product:
- GL(n,F) = SL(n,F) ⋊ F×
When F is R or C, SL(n,F) is a Lie subgroup of GL(n,F) of dimension n2 − 1. The Lie algebra of SL(n,F) consists of all n×n matrices over F with vanishing trace. The Lie bracket is given by the commutator.
The special linear group SL(n,R) can be characterized as the group of volume and orientation preserving linear transformations of Rn.
The group SL(n,C) is simply connected while SL(n,R) is not. SL(n,R) has the same fundamental group as GL+(n, R), that is, Z for n=2 and Z2 for n>2.
Read more about this topic: General Linear Group
Famous quotes containing the words special and/or group:
“O my Brothers! love your Country. Our Country is our home, the home which God has given us, placing therein a numerous family which we love and are loved by, and with which we have a more intimate and quicker communion of feeling and thought than with others; a family which by its concentration upon a given spot, and by the homogeneous nature of its elements, is destined for a special kind of activity.”
—Giuseppe Mazzini (18051872)
“Once it was a boat, quite wooden
and with no business, no salt water under it
and in need of some paint. It was no more
than a group of boards. But you hoisted her, rigged her.
Shes been elected.”
—Anne Sexton (19281974)