In Terms of Determinants
Over a field F, a matrix is invertible if and only if its determinant is nonzero. Therefore an alternative definition of GL(n, F) is as the group of matrices with nonzero determinant.
Over a commutative ring R, one must be slightly more careful: a matrix over R is invertible if and only if its determinant is a unit in R, that is, if its determinant is invertible in R. Therefore GL(n, R) may be defined as the group of matrices whose determinants are units.
Over a non-commutative ring R, determinants are not at all well behaved. In this case, GL(n, R) may be defined as the unit group of the matrix ring M(n, R).
Read more about this topic: General Linear Group
Famous quotes containing the word terms:
“Again we have here two distinctions that are no distinctions, but made to seem so by terms invented by I know not whom to cover ignorance, and blind the understanding of the reader: for it cannot be conceived that there is any liberty greater, than for a man to do what he will.”
—Thomas Hobbes (15791688)