General Linear Group of A Vector Space
If V is a vector space over the field F, the general linear group of V, written GL(V) or Aut(V), is the group of all automorphisms of V, i.e. the set of all bijective linear transformations V → V, together with functional composition as group operation. If V has finite dimension n, then GL(V) and GL(n, F) are isomorphic. The isomorphism is not canonical; it depends on a choice of basis in V. Given a basis (e1, ..., en) of V and an automorphism T in GL(V), we have
for some constants ajk in F; the matrix corresponding to T is then just the matrix with entries given by the ajk.
In a similar way, for a commutative ring R the group GL(n, R) may be interpreted as the group of automorphisms of a free R-module M of rank n. One can also define GL(M) for any R-module, but in general this is not isomorphic to GL(n, R) (for any n).
Read more about this topic: General Linear Group
Famous quotes containing the words general, group and/or space:
“The general public is easy. You dont have to answer to anyone; and as long as you follow the rules of your profession, you neednt worry about the consequences. But the problem with the powerful and rich is that when they are sick, they really want their doctors to cure them.”
—Molière [Jean Baptiste Poquelin] (16221673)
“We often overestimate the influence of a peer group on our teenager. While the peer group is most influential in matters of taste and preference, we parents are most influential in more abiding matters of standards, beliefs, and values.”
—David Elkind (20th century)
“The secret ones around a stone
Their lips withdrawn in meet surprise
Lie still, being naught but bone
With naught but space within their eyes....”
—Allen Tate (18991979)