Gaussian Quadrature - Other Forms

Other Forms

The integration problem can be expressed in a slightly more general way by introducing a positive weight function ω into the integrand, and allowing an interval other than . That is, the problem is to calculate

for some choices of a, b, and ω. For a = −1, b = 1, and ω(x) = 1, the problem is the same as that considered above. Other choices lead to other integration rules. Some of these are tabulated below. Equation numbers are given for Abramowitz and Stegun (A & S).

Interval ω(x) Orthogonal polynomials A & S For more information, see ...
Legendre polynomials 25.4.29 Section Gauss–Legendre quadrature, above
(−1, 1) Jacobi polynomials 25.4.33 Gauss–Jacobi quadrature
(−1, 1) Chebyshev polynomials (first kind) 25.4.38 Chebyshev–Gauss quadrature
Chebyshev polynomials (second kind) 25.4.40 Chebyshev–Gauss quadrature
[0, ∞) Laguerre polynomials 25.4.45 Gauss–Laguerre quadrature
[0, ∞) Generalized Laguerre polynomials Gauss–Laguerre quadrature
(−∞, ∞) Hermite polynomials 25.4.46 Gauss–Hermite quadrature

Read more about this topic:  Gaussian Quadrature

Famous quotes containing the word forms:

    It would be easy ... to regard the whole of world 3 as timeless, as Plato suggested of his world of Forms or Ideas.... I propose a different view—one which, I have found, is surprisingly fruitful. I regard world 3 as being essentially the product of the human mind.... More precisely, I regard the world 3 of problems, theories, and critical arguments as one of the results of the evolution of human language, and as acting back on this evolution.
    Karl Popper (1902–1994)

    There is a continual exchange of ideas between all minds of a generation. Journalists, popular novelists, illustrators, and cartoonists adapt the truths discovered by the powerful intellects for the multitude. It is like a spiritual flood, like a gush that pours into multiple cascades until it forms the great moving sheet of water that stands for the mentality of a period.
    Auguste Rodin (1849–1917)