Gaussian Function - Multi-dimensional Gaussian Function

Multi-dimensional Gaussian Function

In an -dimensional space a Gaussian function can be defined as


f(x) = \exp(-x^TAx) \;,

where is a column of coordinates, is a positive-definite matrix, and denotes transposition.

The integral of a Gaussian function over the whole -dimensional space is given as


\int_{\mathbb{R}^n}\exp(-x^TBx)dx = \sqrt{\frac{\pi^n}{\det{B}}} \;.

It can be easily calculated by diagonalizing the matrix and changing the integration variables to the eigenvectors of .

More generally a shifted Gaussian function is defined as


f(x) = \exp(-x^TAx+s^Tx) \;,

where is the shift vector and the matrix can be assumed to be symmetric, . The following integrals with this function can be calculated with the same technique,


\int d^nx e^{-x^TBx+v^Tx} = \sqrt{\frac{\pi^n}{\det{B}}} \exp(\frac{1}{4}v^TB^{-1}v)\equiv \mathcal{M}\;.

\int d^n x e^{- x^T B x + v^T x} \left( a^T x \right) = (a^T u) \cdot
\mathcal{M}\;,\; {\rm where}\;
u = \frac{1}{2} B^{- 1} v \;.

\int d^n x e^{- x^T B x + v^T x} \left( x^T D x \right) = \left( u^T D u +
\frac{1}{2} {\rm tr} (D B^{- 1}) \right) \cdot \mathcal{M}\;.

\begin{align}
& \int d^n x e^{- x^T A' x + s'^T x} \left( -
\frac{\partial}{\partial x} \Lambda \frac{\partial}{\partial x} \right) e^{-
x^T A x + s^T x} = \\
& = \left( 2 {\rm tr} (A' \Lambda A B^{- 1}) + 4 u^T A' \Lambda A u - 2 u^T
(A' \Lambda s + A \Lambda s') + s'^T \Lambda s \right) \cdot \mathcal{M}\;,
\\ & {\rm where} \;
u = \frac{1}{2} B^{- 1} v, v = s + s', B = A + A' \;.
\end{align}

Read more about this topic:  Gaussian Function

Famous quotes containing the word function:

    It is not the function of our Government to keep the citizen from falling into error; it is the function of the citizen to keep the Government from falling into error.
    Robert H. [Houghwout] Jackson (1892–1954)