Gaussian Curvature - Total Curvature

The surface integral of the Gaussian curvature over some region of a surface is called the total curvature. The total curvature of a geodesic triangle equals the deviation of the sum of its angles from π. The sum of the angles of a triangle on a surface of positive curvature will exceed π, while the sum of the angles of a triangle on a surface of negative curvature will be less than π. On a surface of zero curvature, such as the Euclidean plane, the angles will sum to precisely π.

A more general result is the Gauss–Bonnet theorem.

Read more about this topic:  Gaussian Curvature

Famous quotes containing the word total:

    For, the expectation of gratitude is mean, and is continually punished by the total insensibility of the obliged person. It is a great happiness to get off without injury and heart-burning, from one who has had the ill luck to be served by you. It is a very onerous business, this being served, and the debtor naturally wishes to give you a slap.
    Ralph Waldo Emerson (1803–1882)