Origin and Evolution
Ganymede probably formed by an accretion in Jupiter's subnebula, a disk of gas and dust surrounding Jupiter after its formation. The accretion of Ganymede probably took about 10,000 years, much shorter than the 100,000 years estimated for Callisto. The Jovian subnebula may have been relatively "gas-starved" when the Galilean satellites formed; this would have allowed for the lengthy accretion times required for Callisto. In contrast Ganymede formed closer to Jupiter, where the subnebula was denser, which explains its shorter formation timescale. This relatively fast formation prevented the escape of accretional heat, which may have led to ice melt and differentiation: the separation of the rocks and ice. The rocks settled to the center, forming the core. In this respect, Ganymede is different from Callisto, which apparently failed to melt and differentiate early due to loss of the accretional heat during its slower formation. This hypothesis explains why the two Jovian moons look so dissimilar, despite their similar mass and composition. Alternative theories explain Ganymede's greater internal heating on the basis of tidal flexing or more intense pummeling by impactors during the Late Heavy Bombardment.
After formation, the Ganymedian core largely retained the heat accumulated during accretion and differentiation, only slowly releasing it to the ice mantle like a kind of thermal battery. The mantle, in turn, transported it to the surface by convection. Soon the decay of radioactive elements within rocks further heated the core, causing increased differentiation: an inner, iron–iron sulfide core and a silicate mantle formed. With this, Ganymede became a fully differentiated body. By comparison, the radioactive heating of undifferentiated Callisto caused convection in its icy interior, which effectively cooled it and prevented large-scale melting of ice and rapid differentiation. The convective motions in Callisto have caused only a partial separation of rock and ice. Today, Ganymede continues to cool slowly. The heat being released from its core and silicate mantle enables the subsurface ocean to exist, while the slow cooling of the liquid Fe–FeS core causes convection and supports magnetic field generation. The current heat flux out of Ganymede is probably higher than that out of Callisto.
Read more about this topic: Ganymede (moon)
Famous quotes containing the words origin and, origin and/or evolution:
“We have got rid of the fetish of the divine right of kings, and that slavery is of divine origin and authority. But the divine right of property has taken its place. The tendency plainly is towards ... a government of the rich, by the rich, and for the rich.”
—Rutherford Birchard Hayes (18221893)
“Art is good when it springs from necessity. This kind of origin is the guarantee of its value; there is no other.”
—Neal Cassady (19261968)
“Like Freud, Jung believes that the human mind contains archaic remnants, residues of the long history and evolution of mankind. In the unconscious, primordial universally human images lie dormant. Those primordial images are the most ancient, universal and deep thoughts of mankind. Since they embody feelings as much as thought, they are properly thought feelings. Where Freud postulates a mass psyche, Jung postulates a collective psyche.”
—Patrick Mullahy (b. 1912)