Orbit and Rotation
Ganymede orbits Jupiter at a distance of 1,070,400 km, third among the Galilean satellites, and completes a revolution every seven days and three hours. Like most known moons, Ganymede is tidally locked, with one side of the moon always facing toward the planet. Its orbit is very slightly eccentric and inclined to the Jovian equator, with the eccentricity and inclination changing quasi-periodically due to solar and planetary gravitational perturbations on a timescale of centuries. The ranges of change are 0.0009–0.0022 and 0.05–0.32°, respectively. These orbital variations cause the axial tilt (the angle between rotational and orbital axes) to vary between 0 and 0.33°.
Ganymede participates in orbital resonances with Europa and Io: for every orbit of Ganymede, Europa orbits twice and Io orbits four times. The superior conjunction between Io and Europa always occurs when Io is at periapsis and Europa at apoapsis. The superior conjunction between Europa and Ganymede occurs when Europa is at periapsis. The longitudes of the Io–Europa and Europa–Ganymede conjunctions change with the same rate, making the triple conjunctions impossible. Such a complicated resonance is called the Laplace resonance.
The current Laplace resonance is unable to pump the orbital eccentricity of Ganymede to a higher value. The value of about 0.0013 is probably a remnant from a previous epoch, when such pumping was possible. The Ganymedian orbital eccentricity is somewhat puzzling; if it is not pumped now it should have decayed long ago due to the tidal dissipation in the interior of Ganymede. This means that the last episode of the eccentricity excitation happened only several hundred million years ago. Because the orbital eccentricity of Ganymede is relatively low—0.0015 on average—the tidal heating of this moon is negligible now. However, in the past Ganymede may have passed through one or more Laplace-like resonances that were able to pump the orbital eccentricity to a value as high as 0.01–0.02. This probably caused a significant tidal heating of the interior of Ganymede; the formation of the grooved terrain may be a result of one or more heating episodes.
There are two hypotheses for the origin of the Laplace resonance among Io, Europa, and Ganymede: that it is primordial and has existed from the beginning of the Solar System; or that it developed after the formation of the Solar System. A possible sequence of events for the latter scenario is as follows: Io raised tides on Jupiter, causing its orbit to expand until it encountered the 2:1 resonance with Europa; after that the expansion continued, but some of the angular moment was transferred to Europa as the resonance caused its orbit to expand as well; the process continued until Europa encountered the 2:1 resonance with Ganymede. Eventually the drift rates of conjunctions between all three moons were synchronized and locked in the Laplace resonance.
Read more about this topic: Ganymede (moon)
Famous quotes containing the words orbit and, orbit and/or rotation:
“Words can have no single fixed meaning. Like wayward electrons, they can spin away from their initial orbit and enter a wider magnetic field. No one owns them or has a proprietary right to dictate how they will be used.”
—David Lehman (b. 1948)
“The Fitchburg Railroad touches the pond about a hundred rods south of where I dwell. I usually go to the village along its causeway, and am, as it were, related to society by this link. The men on the freight trains, who go over the whole length of the road, bow to me as to an old acquaintance, they pass me so often, and apparently they take me for an employee; and so I am. I too would fain be a track-repairer somewhere in the orbit of the earth.”
—Henry David Thoreau (18171862)
“The lazy manage to keep up with the earths rotation just as well as the industrious.”
—Mason Cooley (b. 1927)