Emission Mechanisms
The means by which gamma-ray bursts convert energy into radiation remains poorly understood, and as of 2010 there was still no generally accepted model for how this process occurs. Any successful model of GRB emission must explain the physical process for generating gamma-ray emission that matches the observed diversity of light-curves, spectra, and other characteristics. Particularly challenging is the need to explain the very high efficiencies that are inferred from some explosions: some gamma-ray bursts may convert as much as half (or more) of the explosion energy into gamma-rays. Recent observations of the bright optical counterpart of GRB 080319B, whose light curve was correlated with the gamma-ray light curve, has suggested that inverse Compton may be the dominant process in some events. In this model, pre-existing low-energy photons are scattered by relativistic electrons within the explosion, augmenting their energy by a large factor and transforming them into gamma-rays.
The nature of the longer-wavelength afterglow emission (ranging from X-ray through radio) that follows gamma-ray bursts is better understood. Any energy released by the explosion not radiated away in the burst itself takes the form of matter or energy moving outward at nearly the speed of light. As this matter collides with the surrounding interstellar gas, it creates a relativistic shock wave that then propagates forward into interstellar space. A second shock wave, the reverse shock, may propagate back into the ejected matter. Extremely energetic electrons within the shock wave are accelerated by strong local magnetic fields and radiate as synchrotron emission across most of the electromagnetic spectrum. This model has generally been successful in modeling the behavior of many observed afterglows at late times (generally, hours to days after the explosion), although there are difficulties explaining all features of the afterglow very shortly after the gamma-ray burst has occurred.
Read more about this topic: Gamma-ray Burst
Famous quotes containing the word emission:
“Approximately 80% of our air pollution stems from hydrocarbons released by vegetation, so lets not go overboard in setting and enforcing tough emission standards from man-made sources.”
—Ronald Reagan (b. 1911)