N-player Ruin Problem
The above described problem (2 players) is a special case of the so-called N-Player ruin problem. Here players with initial capital dollars, respectively, play a sequence of (arbitrary) independent games and win and lose certain amounts of dollars from/to each other according to fixed rules. The sequence of games ends as soon as at least one player is ruined. Standard Markov chain methods can be applied to solve in principle this more general problem, but the computations quickly become prohibitive as soon as the number of players or their initial capital increase. For and large initial capitals the solution can be well approximated by using two-dimensional Brownian motion. (For this is not possible.) In practice the true problem is to find the solution for the typical cases of and limited initial capital. Swan (2006) proposed an algorithm based on Matrix-analytic methods (Folding algorithm for ruin problems) which reduces, in such cases, the order of the computational task significantly.
Read more about this topic: Gambler's Ruin
Famous quotes containing the words ruin and/or problem:
“All history attests that man has subjected woman to his will, used her as a means to promote his selfish gratification, to minister to his sensual pleasures, to be instrumental in promoting his comfort; but never has he desired to elevate her to that rank she was created to fill. He has done all he could to debase and enslave her mind; and now he looks triumphantly on the ruin he has wrought, and say, the being he has thus deeply injured is his inferior.”
—Sarah M. Grimke (17921873)
“The disesteem into which moralists have fallen is due at bottom to their failure to see that in an age like this one the function of the moralist is not to exhort men to be good but to elucidate what the good is. The problem of sanctions is secondary.”
—Walter Lippmann (18891974)