Description
In its simplest form, a half-cell consists of a solid metal (called an electrode) that is submerged in a solution; the solution contains cations of the electrode metal and anions to balance the charge of the cations. In essence, a half-cell contains a metal in two oxidation states; inside an isolated half-cell, there is an oxidation-reduction (redox) reaction that is in chemical equilibrium, a condition written symbolically as follows (here, "M" represents a metal cation, an atom that has a charge imbalance due to the loss of "n" electrons):
- Mn+ (oxidized species) + ne- M (reduced species)
A Galvanic cell consists of two half-cells, such that the electrode of one half-cell is composed of metal A, and the electrode of the other half-cell is composed of metal B; the redox reactions for the two separate half-cells are thus:
- An+ + ne- A
- Bm+ + me- B
In general, then, these two metals can react with each other:
- m A + n Bm+ n B + m An+
In other words, the metal atoms of one half-cell are able to induce reduction of the metal cations of the other half-cell; conversely stated, the metal cations of one half-cell are able to oxidize the metal atoms of the other half-cell. When metal B has a greater electronegativity than metal A, then metal B tends to steal electrons from metal A (that is, metal B tends to oxidizes metal A), thus favoring one direction of the reaction:
- m A + n Bm+ n B + m An+
This reaction between the metals can be controlled in a way that allows for doing useful work:
- The electrodes are connected with a metal wire in order to conduct the electrons that participate in the reaction.
- In one half-cell, dissolved metal-B cations combine with the free electrons that are available at the interface between the solution and the metal-B electrode; these cations are thereby neutralized, causing them to precipitate from solution as deposits on the metal-B electrode, a process known as plating.
- This reduction reaction causes the free electrons throughout the metal-B electrode, the wire, and the metal-A electrode to be pulled into the metal-B electrode. Consequently, electrons are wrestled away from some of the atoms of the metal-A electrode, as though the metal-B cations were reacting directly with them; those metal-A atoms become cations that dissolve into the surrounding solution.
- As this reaction continues, the half-cell with the metal-A electrode develops a positively charged solution (because the metal-A cations dissolve into it), while the other half-cell develops a negatively charged solution (because the metal-B cations precipitate out of it, leaving behind the anions); unabated, this imbalance in charge would stop the reaction.
- The solutions are connected by a salt bridge or a porous plate in order to conduct the ions (both the metal-A cations from one solution, and the anions from the other solution), which balances the charges of the solutions and thereby allows the reaction between metal A and metal B to continue without opposition.
By definition:
- The anode is the electrode where oxidation (loss of electrons) takes place; the anode attracts anions. The metal-A electrode is the anode.
- The cathode is the electrode where reduction (gain of electrons) takes place; the cathode attracts cations. The metal-B electrode is the cathode.
Copper readily oxidizes zinc; for the Daniell cell depicted in the figure, the anode is zinc and the cathode is copper, and the anions in the solutions are sulfates of the respective metals. When an electrically conducting device connects the electrodes, the electrochemical reaction is:
- Zn + Cu2+ → Zn2++ Cu
The zinc electrode is dissolved and copper is deposited on the copper electrode.
Galvanic cells are typically used as a source of electrical power. By their nature, they produce direct current. The Weston cell has an anode composed of cadmium mercury amalgam, and a cathode composed of pure mercury. The electrolyte is a (saturated) solution of cadmium sulfate. The depolarizer is a paste of mercurous sulfate. When the electrolyte solution is saturated, the voltage of the cell is very reproducible; hence, it was adopted as an International Standard for voltage in 1911.
A battery is a set of galvanic cells that are connected in parallel. For instance, a lead–acid battery has galvanic cells with the anodes composed of lead and cathodes composed of lead dioxide.
Read more about this topic: Galvanic Cell
Famous quotes containing the word description:
“I fancy it must be the quantity of animal food eaten by the English which renders their character insusceptible of civilisation. I suspect it is in their kitchens and not in their churches that their reformation must be worked, and that Missionaries of that description from [France] would avail more than those who should endeavor to tame them by precepts of religion or philosophy.”
—Thomas Jefferson (17431826)
“Why does philosophy use concepts and why does faith use symbols if both try to express the same ultimate? The answer, of course, is that the relation to the ultimate is not the same in each case. The philosophical relation is in principle a detached description of the basic structure in which the ultimate manifests itself. The relation of faith is in principle an involved expression of concern about the meaning of the ultimate for the faithful.”
—Paul Tillich (18861965)
“The type of fig leaf which each culture employs to cover its social taboos offers a twofold description of its morality. It reveals that certain unacknowledged behavior exists and it suggests the form that such behavior takes.”
—Freda Adler (b. 1934)