Galois Theory - Modern Approach By Field Theory

Modern Approach By Field Theory

In the modern approach, one starts with a field extension L/K (read: L over K), and examines the group of field automorphisms of L/K (these are mappings α: LL with α(x) = x for all x in K). See the article on Galois groups for further explanation and examples.

The connection between the two approaches is as follows. The coefficients of the polynomial in question should be chosen from the base field K. The top field L should be the field obtained by adjoining the roots of the polynomial in question to the base field. Any permutation of the roots which respects algebraic equations as described above gives rise to an automorphism of L/K, and vice versa.

In the first example above, we were studying the extension Q(√3)/Q, where Q is the field of rational numbers, and Q(√3) is the field obtained from Q by adjoining √3. In the second example, we were studying the extension Q(A,B,C,D)/Q.

There are several advantages to the modern approach over the permutation group approach.

  • It permits a far simpler statement of the fundamental theorem of Galois theory.
  • The use of base fields other than Q is crucial in many areas of mathematics. For example, in algebraic number theory, one often does Galois theory using number fields, finite fields or local fields as the base field.
  • It allows one to more easily study infinite extensions. Again this is important in algebraic number theory, where for example one often discusses the absolute Galois group of Q, defined to be the Galois group of K/Q where K is an algebraic closure of Q.
  • It allows for consideration of inseparable extensions. This issue does not arise in the classical framework, since it was always implicitly assumed that arithmetic took place in characteristic zero, but nonzero characteristic arises frequently in number theory and in algebraic geometry.
  • It removes the rather artificial reliance on chasing roots of polynomials. That is, different polynomials may yield the same extension fields, and the modern approach recognizes the connection between these polynomials.

Read more about this topic:  Galois Theory

Famous quotes containing the words modern, approach, field and/or theory:

    Despair is typical of those who do not understand the causes of evil, see no way out, and are incapable of struggle. The modern industrial proletariat does not belong to the category of such classes.
    Vladimir Ilyich Lenin (1870–1924)

    I have watched ... many literary fashions shoot up and blossom, and then fade and drop.... Yet with the many that I have seen come and go, I have never yet encountered a mode of thinking that regarded itself as simply a changing fashion, and not as an infallible approach to the right culture.
    Ellen Glasgow (1873–1945)

    We need a type of theatre which not only releases the feelings, insights and impulses possible within the particular historical field of human relations in which the action takes place, but employs and encourages those thoughts and feelings which help transform the field itself.
    Bertolt Brecht (1898–1956)

    Frankly, these days, without a theory to go with it, I can’t see a painting.
    Tom Wolfe (b. 1931)